On the construction of asymmetric orthogonal arrays

Tian-fang Zhang ${ }^{\text {a }}$, Yang-yang Zong ${ }^{\text {a }}$, Aloke Dey ${ }^{\text {b,* }}$
${ }^{\text {a College of Mathematical and Informational Sciences, Jiangxi Normal University, Nanchang 330022, China }}$
${ }^{\text {b }}$ Indian Statistical Institute, New Delhi 110016, India

A R T I C L E IN F O

Article history:

Received 28 May 2015
Received in revised form 6 August 2015
Accepted 3 September 2015
Available online 21 September 2015
MSC:
62K15
Keywords:
Asymmetric orthogonal arrays
Galois field
Replacement procedure
Tight arrays

Abstract

A general method of construction of asymmetric orthogonal arrays was proposed by Suen et al. (2001). Using this method and some modifications thereof, we construct some more families of asymmetric orthogonal arrays of strength greater than two.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Asymmetric orthogonal arrays introduced by Rao (1973) have received considerable attention in recent years. Such arrays are useful in experimental designs as universally optimal fractions of asymmetric factorials. Asymmetric orthogonal arrays have also been found to be very useful in industrial experimentation for quality improvement. Construction of asymmetric orthogonal arrays of strength two has been an area of intense research and we refer the reader to Hedayat et al. (1999) for an excellent description of these; see also Wu et al. (1992) and Chen et al. (2014). Relatively less is known on the construction of asymmetric orthogonal arrays of strength larger than two. Apart from the methods of construction of asymmetric orthogonal arrays of strength larger than two described in Dey and Mukerjee (1999) and Hedayat et al. (1999), further work on the construction of arrays of strength three or higher have been carried out e.g., by Suen et al. (2001), Suen and Dey (2003), Nguyen (2008) and Jiang and Yin (2013). In particular, Suen et al. (2001) proposed a general method for constructing asymmetric orthogonal arrays of arbitrary strength. This method was then applied by them to obtain several families of asymmetric orthogonal arrays of strength three and four. Suen and Dey (2003) combined tools from finite projective geometry with the method of Suen et al. (2001) to construct some new families of asymmetric orthogonal arrays of strength three and four.

Recall that an orthogonal array $O A\left(N, u, s_{1} \times \cdots \times s_{u}, g\right)$ of strength g, is an $N \times u$ matrix with symbols in the i th column from a finite set of $s_{i}(\geqslant 2)$ symbols, $1 \leqslant i \leqslant u$, such that in every $N \times g$ submatrix, all possible combinations of symbols appear equally often as a row. Orthogonal arrays with $s_{1}=s_{2}=\cdots=s_{u}=s$ (say) are called symmetric and are denoted by $O A(N, u, s, g)$; otherwise, the array is called asymmetric (or, mixed levels). It is known that for an orthogonal

[^0]array $O A\left(N, u, s_{1} \times \cdots \times s_{u}, 3\right)$,
$$
N \geqslant 1+\sum_{i=1}^{u}\left(s_{i}-1\right)+\left(s^{*}-1\right)\left\{\sum_{i=1}^{u}\left(s_{i}-1\right)-\left(s^{*}-1\right)\right\},
$$
where $s^{*}=\max _{1 \leqslant i \leqslant u} s_{i}$. Arrays of strength three for which N attains the above bound are called tight.
Henceforth, the columns of an $O A\left(N, u, s_{1} \times \cdots \times s_{u}, g\right)$ will be called factors, following the terminology in factorial experiments, and these factors will be denoted by F_{1}, \ldots, F_{u}. Throughout this paper, we take the integer $s \geqslant 2$ to be a prime or a prime power, i.e., $s=m^{k}$, where m is a prime and $k \geqslant 1$ is an integer. The Galois field of order s will be denoted by $G F(s)$, 0 and 1 being the identity elements of the field corresponding to the operations 'addition' and 'multiplication', respectively. Also, throughout a prime will denote transposition. We shall need the following results, the first of which is well known and the second one is due to Suen et al. (2001).

Lemma 1. Let α and β be two elements of GF(s) such that $\alpha^{2}=\beta^{2}$. Then (i) $\alpha=\beta$ if s is even, (ii) either $\alpha=\beta$ or $\alpha=-\beta$, if s is odd.

Lemma 2. For a positive integer p, let D be a $(2 p+1) \times s^{p}$ matrix with columns of the form $\left(\alpha_{1}^{2}, \ldots, \alpha_{p}^{2}, \alpha_{1}, \ldots, \alpha_{p}, 1\right)^{\prime}$, where $\left(\alpha_{1}, \ldots, \alpha_{p}\right)$'s are all possible p - tuples with entries from $G F(s)$. Then any three distinct columns of D are linearly independent.

If $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s-1}$ are the elements of $G F(s)$, then it follows from Lemma 1 that the set $S=\left\{\alpha_{0}^{2}, \alpha_{1}^{2}, \ldots, \alpha_{s-1}^{2}\right\}$ contains all the elements of $G F(s)$ if s is even. If s is odd, then one element of S is 0 and there are $(s-1) / 2$ distinct non-zero elements of $G F(s)$, each appearing twice in S.

For the factor $F_{i}(1 \leqslant i \leqslant u)$, define the $r \times 1$ columns, $\boldsymbol{p}_{i 1}, \ldots, \boldsymbol{p}_{i n_{i}}$ with elements from $G F(s)$. Then, for the u factors we have in all $\sum_{i=1}^{u} n_{i}$ columns. Also, let B be an $s^{r} \times r$ matrix whose rows are all possible r-tuples over $G F(s)$. Suen et al. (2001) proved the following result.

Theorem 1. Consider an $r \times \sum_{i=1}^{u} n_{i}$ matrix $C=\left[P_{1} \vdots P_{2} \vdots \ldots \vdots P_{u}\right], P_{i}=\left[\boldsymbol{p}_{i 1}, \ldots, \boldsymbol{p}_{i n_{i}}\right], 1 \leqslant i \leqslant u$, such that for every choice of g matrices $P_{i_{1}}, \ldots, P_{i_{g}}$ from P_{1}, \ldots, P_{u}, the $r \times \sum_{j=1}^{g} n_{i_{j}}$ matrix $\left[P_{i_{1}}, \ldots, P_{i_{g}}\right]$ has full column rank over $G F(s)$. Then an $O A\left(s^{r}, u,\left(s^{n_{1}}\right) \times\left(s^{n_{2}}\right) \times \cdots \times\left(s^{n_{u}}\right), g\right)$ can be constructed.

A little elaboration of the result in Theorem 1 seems to be in order to make the construction transparent. For a fixed choice of g indices $\left\{i_{1}, \ldots, i_{g}\right\} \in\{1, \ldots, u\}$, let $C_{1}=\left[P_{i_{1}}, \ldots, P_{i_{g}}\right]$ and $d=\sum_{j=1}^{g} n_{i_{j}}$. By the rank condition of Theorem 1, it follows that in the product $B C_{1}$, each possible $1 \times d$ vector with entries from $G F(s)$ appears s^{r-d} times. Now, for each $j, 1 \leqslant j \leqslant g$, replace the $s^{n_{i j}}$ distinct combinations under $P_{i_{j}}$ by $s^{n_{i j}}$ distinct symbols using a 1-1 correspondence. In the resultant $s^{r} \times g$ matrix,
(i) the i_{j} th column has $s^{n_{i j}}$ symbols $(1 \leqslant j \leqslant g)$ and (ii) each of the $\prod_{j=1}^{g} s^{n_{i j}}$ combinations of the symbols occurs equally often as a row. Hence, the desired orthogonal array with parameters as in Theorem 1 can be constructed.

This paper is organized as follows. Two families of asymmetric orthogonal arrays of strength three are constructed in Section 2. Using a replacement procedure, two new families of orthogonal arrays of strength $g \geq 2$ are reported in Section 3 . In Section 4, we construct some families of tight asymmetric orthogonal arrays of strength three.

2. Construction of orthogonal arrays of strength three

In this section, we construct two families of orthogonal arrays of strength three.
Theorem 2. Let $q \geqslant 2$ be an integer and l denote the largest integer not exceeding $q / 2$.
(i) If s is an odd prime or an odd prime power, then an orthogonal array $O A\left(s^{2 q+1}, s^{q}+(q-1)(s-1)^{l}+2,\left(s^{2}\right) \times\right.$ $s^{s^{q}+(q-1)(s-1)^{l}+1}$, 3) can be constructed.
(ii) If s is a power of two, then an orthogonal array $O A\left(s^{2 q+1}, s^{q}+(q-1) s^{l}+2,\left(s^{2}\right) \times s^{s^{q}+(q-1) s^{l}+1}\right.$, 3) can be constructed.

Proof. (i) Let s be an odd prime or an odd prime power. Let F_{1} have s^{2} symbols and the rest of the factors have s symbols each. The matrices $P_{i}, 1 \leqslant i \leqslant u$, corresponding to the different factors are chosen as below, where $u=s^{q}+(q-1)(s-1)^{l}+2$.
P_{1} is chosen as $P_{1}=\left[\begin{array}{lll}I_{2} & \mathbf{0}_{2,2 q-2} & \boldsymbol{e}\end{array}\right]^{\prime}$, where I_{a} is the identity matrix of order $a, \mathbf{0}_{a, b}$ is a $a \times b$ null matrix, $\boldsymbol{e}=(0,1)^{\prime}$. The matrix P_{2} is chosen as $A_{2}=\left[0, x, \mathbf{0}_{1,2 q-2}, 1\right]^{\prime}, x \in G F(s), x \neq 0,1$.

Suppose $\gamma_{1}, \ldots, \gamma_{l}$ are non-zero elements of $G F(s)$. For $3 \leqslant i \leqslant(s-1)^{l}+2$, if q is even, then P_{i} is chosen to be of the form $P_{i}=\left[\gamma_{1}^{2}, \ldots, \gamma_{l}^{2}, \gamma_{l}, \ldots, \gamma_{1}, 0,1, \mathbf{0}_{1, q-1}\right]^{\prime}$. For $(s-1)^{l}+3 \leqslant i \leqslant 2(s-1)^{l}+2$, let P_{i} be of the form

$$
P_{i}=\left[\gamma_{1}^{2}, \ldots, \gamma_{l}^{2}, \gamma_{l}, \ldots, \gamma_{1}, 0,0,1, \mathbf{0}_{1, q-2}\right]^{\prime}
$$

i.e., 1 appears in the $(q+3)$ th position. The other A_{i} matrices for this case are obtained by putting 1 in the $(q+4)$ th, $(q+5)$ th, $\ldots, 2 q$ th position, to get a total of $(q-1)(s-1)^{l}$ columns of such a form. If q is odd, P_{i} is of the form

https://daneshyari.com/en/article/7547562

Download Persian Version:
https://daneshyari.com/article/7547562

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: adey@isid.ac.in, aloke.dey@gmail.com (A. Dey).

