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a b s t r a c t

We study pathwise invariances and degeneracies of random fields with motivating appli-
cations in Gaussian process modelling. The key idea is that a number of structural prop-
erties one may wish to impose a priori on functions boil down to degeneracy properties
underwell-chosen linear operators.We first show in a second order set-up that almost sure
degeneracy of random field paths under some class of linear operators defined in terms
of signed measures can be controlled through the two first moments. A special focus is
then put on the Gaussian case, where these results are revisited and extended to further
linear operators thanks to state-of-the-art representations. Several degeneracy properties
are tackled, including random fields with symmetric paths, centred paths, harmonic paths,
or sparse paths. The proposed approach delivers a number of promising results and per-
spectives in Gaussian process modelling. In a first numerical experiment, it is shown that
dedicated kernels can be used to infer an axis of symmetry. Our second numerical experi-
ment deals with conditional simulations of a solution to the heat equation, and it is found
that adapted kernels notably enable improved predictions of non-linear functionals of the
field such as its maximum.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Whether for function approximation, classification, or density estimation, probabilistic models relying on random fields
have been increasingly used in recent works from various research communities. Finding their applied roots in geostatistics
and spatial statistics with optimal linear prediction and Kriging (Matheron, 1963; Stein, 1999), random field models for
prediction have become a main stream topic in machine learning (under the Gaussian Process Regression terminology, see,
e.g., Rasmussen and Williams, 2006), with a spectrum ranging from metamodeling and adaptive design approaches in
science and engineering Welch et al. (1992), Jones (2001), O’Hagan (2006) to theoretical Bayesian statistics in function
spaces (see Van der Vaart and Van Zanten, 2008a, Van der Vaart and Van Zanten, 2008b, Van der Vaart and van Zanten, 2011
and references therein).

Often, a Gaussian random field model is assumed for some function f of interest, and so all prior assumptions on f
are accounted for by the corresponding mean function m and covariance kernel k. The choice of m and k should thus
reflect as much as possible any prior belief the modeller wishes to incorporate in the model. Such prior belief on f
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may of course include classical regularity properties in the first place (continuity, differentiability, Hölder regularity,
etc.), but also more specific properties such as symmetries (Haasdonk and Burkhardt, 2007; Ginsbourger et al., 2012),
sparse functional ANOVA decompositions (Duvenaud et al., 2011; Durrande et al., 2012; Ginsbourger et al., 2014), or
degeneracy undermultivariate differential operators in the case of vector-valued random fields. To take a concrete example,
covariance structures characterizing divergence-free and curl-free random vector fields have been recently presented and
illustrated in Scheuerer and Schlather (2012). Besides that, the idea of expressing structure with kernels has been explored
in Duvenaud (2014), where a number of practical aspects regarding positive-semidefiniteness-preserving operations are
addressed.

Here we shall discuss how the two first moments influencemathematical properties of associated realizations (or paths),
both in a general second order set-up and in the Gaussian case. A number of well-known random field properties driven by
the covariance kernel are in the mean square sense, e.g. L2 continuity and differentiability (Cressie, 1993). However, such
results generally are not informative about the pathwise behaviour of underlying random fields. On the other hand, much
can be said about path regularity properties of random field paths (see, e.g., classical results in Cramér and Leadbetter, 1967,
Adler, 1990), based in particular on the behaviour of the covariance kernel in the neighbourhood of the diagonal in the second
order case. In the stationary case, it is then sufficient to look at the covariance function in the neighbourhood of the origin
(with similar results for the variogram in the intrinsic stationary – but not necessarily second order – case). More recently,
Scheuerer (2010) has taken a new look at path regularity of second-order random fields, and drew conclusions about a.s.
continuous differentiability in non-Gaussian settings. Also, we refer to Scheuerer (2009) for an enlightening exposition of
state-of-the-art results concerning regularity properties of random field sample paths in various frameworks.

Our focus in the present work is on pathwise mathematical properties of second order random fields and statistical
applications thereof in the context of Gaussian process modelling. Motivated by several practical situations, we pay a
particular attention to random fields Z = (Zx)x∈D that are supported by the null space of some linear operator T , i.e. for
which

T (Z) = 0 (a.s.). (1)

As we first develop in general second-order settings, an impressive diversity of path properties including invariances under
group actions or sparse ANOVA decompositions of multivariate paths can be encapsulated in the framework of Eq. (1).
Furthermore, in the particular case of Gaussian random fields, a more general class of path properties (notably some
degeneracy properties involving differential operators) can be covered through the link between operators on the paths
and operators on the reproducing kernel Hilbert space (Berlinet and Thomas-Agnan, 2004) associated with the random field,
and also through an additional representation of Z in terms of Gaussian measures on Banach spaces.

While Section 2 is dedicated to the exposition of the main results, proofs are presented in the Appendix to ease the
reading. Applications in the context of random field modelling, and especially for Gaussian process modelling, are then
investigated throughout Section 3. In particular, we tackle zero-integral random processes, random fields with paths
invariant under group actions, random fields with additive paths, random fields with harmonic paths, and discuss further
potential applications.

In Section 4, we present two original numerical experimentswhere the notions of degeneracy and invariance appear very
useful in Gaussian process modelling under two types of structural prior information. In the first case, the objective function
possesses an unknown axis of symmetry, which is inferred by maximum likelihood, relying on a family of argumentwise
invariant covariance kernels. In the second case, we obtain an improved interpolation of a solution to the heat equation
thanks to a bi-harmonic kernel. The proposed model enables performing harmonic conditional simulations, which has very
beneficial consequences in terms of estimation of themaximum. Section 5 is dedicated to conclusions and perspectives. The
main results are finally proven in the Appendix.

2. Main results

Let (D, D) be a measurable space, (Ω, A, P) be a complete probability space, and Z = (Zx)x∈D be a measurable real-
valued stochastic process over (Ω, A, P). Let us further assume that the paths of Z belong with probability 1 to some
function space F ⊂ M(D, R), where M(D, R) is the set of (D, B(R))-measurable functions, and consider a linear operator
T : F −→ F . Here both Z and T (Z) are assumed second order, in the sense that their marginals possess a variance, and
we aim at giving necessary and sufficient conditions in terms of the two first moments of Z for the following degeneracy to
hold:

P(T (Z) = 0) = P(∀x ∈ D T (Z)x = 0) = 1. (2)

We prove that in a variety of settings on T and Z , this is equivalent to having that bothm and k are in the null space of T in a
sense to be discussed next. In Section 2.1we discuss equivalent conditions that do not involve any distributional assumption,
and we obtain a characterization of degeneracy under a specific class of operators that prove useful for applications in
Sections 3 and 4. In Section 2.2we generalize the results to awider class of operators T in the specific framework of Gaussian
processes and Gaussian measures.
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