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a b s t r a c t

In this study we propose a simulation model for predicting the nonlinear sound propagation of ultra-
sound beams over a distance of a few hundred wavelengths, and we estimate the beam profile of a para-
metric array. Using the finite-difference time-domain method based on the Yee algorithm with operator
splitting, axisymmetric nonlinear propagation was simulated on the basis of equations for a compressible
viscous fluid. The simulation of harmonic generation agreed with the solutions of the Khokhlov–Zabolots-
kaya–Kuznetsov equation around the sound axis except near the sound source. As an application of the
model, we estimated the profiles of length-limited parametric sound beams, which are generated by a
pair of parametric sound sources with controlled amplitudes and phases. The simulation indicated a
sound beam with a narrow truncated array length and a width of about one-quarter to half that of regular
a parametric beam. This result confirms that the control of sound source conditions changes the shape of
a parametric beam and can be used to form a torch like low-frequency sound beam.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The radiation and propagation of two intense ultrasound beams
at different but neighboring frequencies generate not only higher
harmonic sounds but also sum and difference frequency sounds
by the nonlinearity of a medium. A parametric array is an applica-
tion of this phenomenon and forms a sharp directive sound beam
with the difference frequency within the ultrasonic beams [1,2].
There have been a number of fundamental and application studies
on parametric arrays [3–10]. In particular, a length-limited para-
metric sound beam [8] is of great interest owing to its narrow trun-
cated array length. Although such a beam has been experimentally
demonstrated, it has not been discussed in detail.

For nonlinear sound beams including parametric beams, a num-
ber of analytical and numerical approaches have been developed
[11–21]. The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation
[11] is frequently used to describe the nonlinear propagation of
ultrasound beams. This equation can only predict one-way propa-
gation of sound in a field relatively distant from a sound source and
near the beam axis due to a the parabolic approximation of nonlin-
ear sound wave equation.

A time-domain sound simulation is a powerful tool for probing
the transient behavior of sound propagation in a time domain. In
particular, the finite-difference time-domain method based on

the Yee algorithm (Yee-FDTD) [22] is the most commonly used
method for investigating linear sound propagation. For nonlinear
sound propagation, some modified models have been proposed,
for example, a model with the bulk modulus depending on the lo-
cal particle velocity [12]. However this model is not suitable for
obtaining the bulk modulus as a scalar value from the particle
velocity which is a vector value. In addition, the simulation gives
a distorted pulse shape caused by numerical dispersion.

An FDTD method based on the Westervelt equation has been
used to simulate nonlinear propagation [13]. The model is simple
because it uses only one wave equation, whereas the general
Yee-FDTD method uses two equations of pressure and velocity.
However more memory is required for the computation because
the model uses five previous time-step values. A nonlinear
full-wave simulation model with an FDTD method based on the
conservation form of hydrodynamic equations has been applied
to focused sound pulse propagation [14]. The simulation did not
make use of the advantages of the full-wave equation, because
sound pressure was predicted by a second-order the approxima-
tion of the equation of state from the density.

Numerical fluid dynamical approaches, such as the TVD method
with high resolution and the MacCormack method, have been
applied to not only strong nonlinear sound propagation but also
the analysis of other nonlinear sound phenomena, for example,
acoustic streaming and acoustic radiation pressure [15–17]. These
methods, however, require large computational power.

Recently, there have been some new numerical approaches to
nonlinear sound simulations [18–20]. The constrained interpolation

0003-682X/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.apacoust.2012.02.016

⇑ Corresponding author.
E-mail address: h.nomura@uec.ac.jp (H. Nomura).

Applied Acoustics 73 (2012) 1231–1238

Contents lists available at SciVerse ScienceDirect

Applied Acoustics

journal homepage: www.elsevier .com/locate /apacoust

http://dx.doi.org/10.1016/j.apacoust.2012.02.016
mailto:h.nomura@uec.ac.jp
http://dx.doi.org/10.1016/j.apacoust.2012.02.016
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust


profile (CIP) method [18,19], which use field values as well as their
spatial gradients, has been introduced in acoustics. The CIP simula-
tion indicates less numerical dispersion even for small number of
cells, however the simulation has high computational complexity
and exhibits numerical energy dissipation at high frequencies. A
Monte Carlo simulation, which is one of the particle-based methods,
has been used to describe nonlinear propagation in a mean free path
[20]. However, large-scale simulations require a large computa-
tional time.

As stated above, it is difficult to accurately simulate nonlinear
propagation over a long distance, such as that for the field of a
parametric array. In this study, we attempt to simulate nonlinear
sound propagation over a distance of a few hundred wavelengths
based on fluid dynamics using the Yee-FDTD method with operator
splitting and to predict the sound fields of the parametric array. In
addition, as an application of the proposed simulation method, we
simulate the generation of a length-limited parametric sound
beam and estimate its profile.

2. Model equations and simulation method

2.1. Governing equations

We first consider the nonlinear propagation of sound radiated
from an axisymmetric circular sound source at z = 0. The sound
propagation is described as compressible viscous fluid motion
and an ideal gas. The particle velocity vector u with axial and radial
components u and v, density q and pressure P consisting of static
and perturbation components are expressed in axisymmetric
cylindrical coordinates (z,r) and in the time domain t as follows:
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with normalized variables with the notation ~�; ~t ¼ x0t; ~z ¼ k0z;
~r ¼ k0r; ~q ¼ q=q0; ~u ¼ u=c0; eP ¼ P=P0; ~s ¼ s=ðl0x0Þ; eT ¼ T=T0;

~l ¼ l=l0 and ~j ¼ j=j0, where T is the absolute temperature, x0 is
the characteristic angular frequency of the sound, k0 = x0/c0 is the
characteristic wave number, c is the specific heat ratio, Cp is the
specific heat coefficient at a constant pressure and c is the sound
speed. The subscript 0 in the variables designates the quantities
at atmospheric pressure (1 atm) and at temperature
T = T0 = 298.15 K (=25 �C). The components of the stress tensor s,
the term Q related to viscous dissipation and thermal conductivity,
and the equation of state are written as
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where the Reynolds and Prandtl numbers are defined as Re = q0c0/
(l0k0) and Pr = l0Cp/j0, respectively, l is the shear viscosity and j
is the thermal conductivity. In the present model, it is assumed that
the medium is isotropic and that l, j, Cp and c are independent of
location and temperature.

The above equations are summarized in the following compact
form:

@eE1

@~t
¼ eFA1 þ eFAD1 þ eFD1; ð11Þ

@eE2

@~t
¼ eFA2 þ eFAD2 þ eFD2; ð12Þ

whereeE1 ¼ ~u; ~v½ �T; ð13Þ

eE2 ¼ ~q; ePh iT
; ð14Þ

eFA1 ¼ �
1
c~q

@eP
@~z

@eP
@~r

264
375; ð15Þ

eFA2 ¼ �
~q @~u

@~z þ @~v
@~r þ

~v
~r

� �
ceP @~u

@~z þ @~v
@~r þ

~v
~r

� �
24 35; ð16Þ

eFAD1 ¼ �
~u @~u
@~z þ ~v @~u

@~r

~u @~v
@~z þ ~v @~v

@~r

" #
; ð17Þ

eFAD2 ¼ �
~u @~q
@~z þ ~v @~q

@~r

~u @eP
@~z þ ~v @eP

@~r

24 35; ð18Þ

eFD1 ¼
1

~qRe

@~szz
@~z þ

@~szr
@~r þ

~szr
~r

@~szr
@~z þ

@~srr
@~r þ

~srr�~shh
~r

24 35; ð19Þ

eFD2 ¼
1
Re

0

cðc� 1ÞeQ
" #

; ð20Þ

Fig. 1. Staggered grid system. Particle velocities u and v are defined at the cell
boundaries (i ± 1/2, j) and (i, j ± 1/2), respectively, and density q and pressure P are
defined at the cell center (i, j).
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