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a b s t r a c t

This research is motivated from the analysis of a real gene expres-
sion data that aims to identify a subset of ‘‘interesting’’ or ‘‘sig-
nificant’’ genes for further studies. When we blindly applied the
standard false discovery rate (FDR)methods, our biology collabora-
tors were suspicious or confused, as the selected list of significant
genes was highly unbalanced: there were ten times more under-
expressed genes than the over-expressed genes. Their concerns
led us to realize that the observed two-sample t-statistics were
highly skewed and asymmetric, and thus the standard FDR meth-
ods might be inappropriate. To tackle this case, we propose a sym-
metric directional FDR control method that categorizes the genes
into ‘‘over-expressed’’ and ‘‘under-expressed’’ genes, pairs ‘‘over-
expressed’’ and ‘‘under-expressed’’ genes, defines the p-values for
gene pairs via column permutations, and then applies the standard
FDR method to select ‘‘significant’’ gene pairs instead of ‘‘signifi-
cant’’ individual genes. We compare our proposed symmetric di-
rectional FDR method with the standard FDR method by applying
them to simulated data and several well-known real data sets.
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1. Introduction

This research is motivated from the analysis of a real gene expression data. As in the typical com-
parative genomics studieswith high-throughput technologies, the data setwe faced is frommeasuring
the expression levels of m = 54,675 genes on n = 16 microarrays for two groups: n1 = 8 healthy
subjects and n2 = 8 cancer subjects. The goal is to identify genes that are significantly differentially
expressed between two groups with a potential of offering biomarker candidates.

Initially we thought this was a standard multiple hypothesis testing problem that often arises in
modern biomedical applications such as genomic, proteomic, and metabolomic, and thus we blindly
applied the standard false discovery rate (FDR) control method of Benjamini and Hochberg [2]:
we calculated a two-sample t-statistic ti for each gene i, permuted column data (randomly label
cancer/normal subjects) to simulate the null distribution of the t-statistics, computed the corre-
sponding two-sided p-values pi = Pr0{|T | > |ti|}’s for each gene i, and then used the standard
Benjamini–Hochberg FDR method to select significant genes. However, when we reported the list
of significant genes to our biology collaborators, they were suspicious, and felt the results did not
make biology sense. We thought that this might be due to the simplicity of the Benjamini–Hochberg
FDR method, and thus we re-analyzed data by applying more advanced FDR methods such as the ro-
bust FDRmethod of Benjamini and Yekutieli [3], the q-value of Storey [15,16], and the empirical Bayes
estimate of the null distribution of Efron [4]. Unfortunately, our biology collaborators were still unsat-
isfactory to the results. After lengthy discussions, we realized that in our list of significant genes, we
have selected ten timesmore negatively expressed genes than the positively expressed genes, but our
biology collaborators preferred the list of significant genes to be balanced, since symmetry is common
inmany biology systems. More importantly, our biology collaborators did not use any specific biology
knowledge to purposely choose negatively or positively expressed genes in the experiments.

It is natural to ask what happened to the data set we analyzed? Fig. 1 plots the histogram and
QQ-norm plot of the observed t-statistics ti’s in our data set and both plots clearly suggest that the
observed ti’s are highly skewed to negative and any normal distributionN(µ0, σ

2)will likely be a poor
approximation to the null distribution of ti’s. In other words, it is not clear how to estimate the null
distribution Pr0 of ti’s for our data set. It is important to emphasize the role of the null distribution
Pr0 of ti’s when genes are insignificantly differentiated expressed, since otherwise the corresponding
p-values can be useless and thus the standard FDR methods are inappropriate. As mentioned in
Efron [4], there are several methods to derive the null distribution of ti’s in the literature. The first
one is the theoretical t-distribution under the assumption that the data xij’s are independent normally
distributed, and this is often referred as the theoretical null distribution. The second method is data
permutation methods by randomly labeling normal and cancer subjects and using the re-calculated
t∗i to simulate the null distribution. As pointed out in Efron [4], data permutation methods essentially
approximate the null distribution of ti’s as N(0, σ 2) after some suitable transformations, and do not
help if the observed ti’s is not symmetric at 0. This view motivated Efron [4] to propose the third
method that approximates the null distribution based on empirical Bayes: it is assumed that the
null distribution is N(µ0, σ

2) after transformations, where the null mean µ0 is estimated from the
observed ti’s that are likely from the null, say those between the first and third quartiles.

Unfortunately all these three existing approaches of estimating the null distribution of ti’s do not
work in the case when the observed ti’s are asymmetric and highly skewed. One possible remedy
is to extend the empirical Bayes method of Efron [4] by considering a mixture of normal or other
distributions that can take into account the skewed or asymmetric properties of the observed ti’s. See,
for instance, Zhao et al. [19] and Beana et al. [1], which applied the mixture distribution to address
the skewness that is due to the non-null or significant genes. When the null distribution is skewed,
one may still be able to use the mixture model to fit both null and non-null distribution of ti’s, but
it is unclear how to classify the components of the mixture model between the null and non-null
distribution. Moreover, such approach essentially assumes that the extreme behavior of the ti’s can
be predicted based on the non-extreme values of ti’s, which is questionable or at least debatable.

In this article, we propose a novel FDR method that can circumvent the difficulty of estimating
the null distribution of ti’s when they are highly skewed. Motivated by the rationale and remarks of
our biologist collaborators, we note that the ultimate goal in FDR is not necessarily on estimating
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