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a b s t r a c t

This article examines methods to efficiently estimate the mean re-
sponse in a linearmodel with an unknown error distribution under
the assumption that the responses aremissing at random.We show
how the asymptotic variance is affected by the estimator of the re-
gression parameter, and by the imputationmethod. To estimate the
regression parameter, the ordinary least squares is efficient only if
the error distribution happens to be normal. If the errors are not
normal, then we propose a one step improvement estimator or a
maximumempirical likelihood estimator to efficiently estimate the
parameter.

To investigate the imputation’s impact on the estimation of the
mean response, we compare the listwise deletion method and the
propensity score method (which do not use imputation at all), and
two imputation methods. We demonstrate that listwise deletion
and the propensity scoremethod are inefficient. Partial imputation,
where only the missing responses are imputed, is compared to full
imputation, where both missing and non-missing responses are
imputed. Our results reveal that, in general, full imputation is better
than partial imputation. However, when the regression parameter
is estimated very poorly, the partial imputationwill outperform full
imputation. The efficient estimator for the mean response is the
full imputation estimator that utilizes an efficient estimator of the
parameter.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thiswork examinesmethods to efficiently estimate themean response in a semi-parametricmodel
under the assumption that the responses are missing at random. A study by Elliot [4] illustrates the
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complexity of such a problem. He investigated the link between specific minority groups (e.g., non-
Mexican Hispanic Americans or Chinese Americans) and obesity in children. The response variable,
weight of the child, was frequently missing and laws restricting personal information made it
impossible to recover the missing data. Because the missing structure was correlated with other
covariates in the model (e.g. height of the child and location), the results would have contained bias
without imputation, i.e. without the estimation of the missing values.

The book by Little and Rubin [7] is well known for its explanation on the estimation of regression
parameters under the assumption of data missing at random. Schick [15] explains how efficient
estimators are formed for regression models when no distributional assumptions are made on the
covariates. Müller et al. [9] propose the method of full imputation, which estimates all the responses,
as an improvement over partial imputation, where only themissing responses are imputed.Müller [8]
showed that the efficient estimation of the response requires an efficient estimation of the regression
parameters.

We begin by investigating efficient estimation of the regression parameter when the error dis-
tribution is unknown. The ordinary least-squares method proves efficient when the error distri-
bution happens to be normal. The complete case versions of the one step improvement estimator
discussed in Forrester et al. [5] and the maximum empirical likelihood estimator discussed in Peng
and Schick [12] are presented as efficient estimators regardless of the error distribution. Simulations
disclose the mean square error of these estimators under various distributions.

To estimate themean responsewithmissing data we compare four commonmethods: the listwise
deletion, propensity score method, partial imputation, and full imputation. The asymptotic variances
for each method are derived and simulations display the MSE of the estimation of the mean response
under various error distributions. We demonstrate how the MSE is affected by the method of impu-
tation, and by the estimator of the regression parameter.

This research illustrates the imputation method’s impact on estimation in regression models with
missing data. Full imputation exhibits the least asymptotic variance when the parameter is estimated
efficiently.With an inefficient estimate of the parameter we see that full imputation can containmore
asymptotic variance than partial imputation. When the missing structure is not symmetric about the
covariate, the listwise deletion methods will be biased. We find some non-regular errors where the
OLS estimator for the regression parameter performs better than efficient estimators. The simulations
reveal these estimator’s variability for finite sample sizes.

The paper is organized into five sections. After the introduction in Section 1, Section 2 investigates
the efficient estimation of the regression parameter. Section 3 shows the asymptotic variance for
different estimation methods for the mean response with missing data. In Section 4 we compare the
asymptotic variance of the partially imputed estimator to the fully imputed estimator. In Section 5
we show the asymptotic variances for all four imputation methods under various scenarios. Our
conclusions are in Section 6.

2. Parameter estimation in linear regression

2.1. The model

We look at the linear regression model

Y = ϑ⊤X + ε,

whereϑ is the vector of unknown regression coefficients, the covariate vector X and the error variable
ε are independent with unknown distributions, and the error ε has mean zero, finite variance σ 2,
and a density f with the finite Fisher information for location. The latter means that f is absolutely
continuous and I =


l2(y)f (y)dy is finite, where l = −f ′/f is the score function for location. We

allow the response Y to be missing. Then the observed variables are (δ, X, δY ), where δ is zero if the
response Y is not observed and 1 if Y is observed.We assume that the responses aremissing at random,
which means

P(δ = 1|X, Y ) = P(δ = 1|X) = E(δ|X),
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