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a b s t r a c t

A default prior distribution is proposed for the Bayesian analysis of
contingency tables. The prior is specified to allow for dependence
between levels of the factors. Different dependence structures
are considered, including conditional autoregressive and distance
correlation structures. To demonstrate the prior distribution, a
dataset is considered which involves estimating the number of
injecting drug users in the eleven National Health Service board
regions of Scotland using an incomplete contingency table where
the dependence structure relates to geographical regions.
© 2014 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Contingency tables (e.g. [1]) are formed when a population is cross-classified according to a series
of categories (or factors). Each cell count of the table gives the number observed under each cross-
classification. The aim of forming such a table is to summarise the data, and typically, with a view to
identifying interactions or relationships between the factors.

The standard statistical practice to model such interactions is the log–linear model (e.g. [1, Chap-
ter 7]). In this case the logarithm of the expected cell count is proportional to a linear predictor de-
pending on the main effect terms and interaction terms between the factors. Each combination of
interaction terms defines its own log–linear model so that the identification of the non-zero interac-
tion terms translates to an exercise in model comparison. Additionally incomplete contingency tables
with missing cell counts can be used to estimate closed populations [4] where some of the factors
correspond to sources that have either observed or not observed individuals in the population.
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In this paper, we consider the casewhere the levels of one ormore of the factorsmay be dependent
on one another. An obvious example is when one of the factors has levels corresponding to geograph-
ical regions or locations which may be dependent due to their geographical proximity. In these cases,
we may expect the parameters of the log–linear model to have some dependence structure. Bayesian
analysis of contingency tables is common (e.g. [3,13,5]) and is the approach taken here. One feature of
the Bayesian approach is that prior information on the interaction terms can be incorporated through
the prior distribution. We take the position of having weak prior information on the magnitude of the
log–linear parameters but wish to incorporate the information provided by the dependence structure
mentioned above. In the case of weak prior information and model uncertainty, care must be taken
when specifying prior distributions due to Lindley’s paradox (e.g. [16, pp. 77–79]). There have been
several attempts in the literature (e.g. [3,15,18]) to specify ‘‘default’’ prior distributions that can be
applied for log–linear models under model uncertainty. We extend these approaches by developing
a default prior that can take account of the dependence structure between the factor levels and can
be seen as a generalisation of the above mentioned priors. The proposed prior is constructed by con-
ditioning on the constraints on the parameters which are introduced in contingency table analysis to
maintain identifiability of the parameters.

This paper is organised as follows. In Section 2 we set out our notation and briefly describe log–
linear models. In Section 3 we derive our proposed default prior distribution including descriptions
of different dependence structures. Finally, we apply our proposed prior to a real data application in
Section 4, which involves estimating the number of injecting drug users in Scotland. Here, one of the
factors corresponds to geographical regions, and we wish to take account of the possible dependence
structure that may exist for the regions.

2. Notation and log–linear models

2.1. Notation

We assume that there are a total of c factors such that each factor k = 1, . . . , c has lk levels. The
corresponding contingency table has n =

c
k=1 lk cells. Let y be the n × 1 vector of cell counts with

elements denoted as yi and where i = (i1, . . . , ic) identifies the combination of factor levels that
cross-classify the cell i. Let S be set of all n cross-classifications so that

S = {(i1, . . . , ic) : il ∈ {1, . . . , lk}} .

Finally, let N =


i∈S yi be the total population size. In the case of an incomplete contingency table,
N is unknown, since elements of y are unknown.

As a pedagogic example that we use for illustrative purposes throughout, suppose that there
are three factors used to cross-classify a population of hospital patients: age (2 levels: young; old),
hypertension (2 levels: no; yes) and region (3 levels: A; B; C). In this example, c = 3, where
l1 = 2, l2 = 2 and l3 = 3, and the three factors (age, hypertension and region) have been labelled 1,
2 and 3, respectively. It follows that there are n = 2 × 2 × 3 = 12 cells.

2.2. Log–linear models

We now briefly describe log–linear models and initially assume that the form of the log–linear
model is known, i.e. it is known which interactions are present. We extend to the case of model
uncertainty later in this section. Let ηi denote the linear predictor associated with cell i ∈ S, where

ηi = φ + zTi θ,
with φ ∈ R denoting the intercept term, θ the q × 1 vector of log–linear parameters (i.e. the main
effects and interaction terms) and zi the q× 1 vector of zeros and ones identifying which elements of
θ are applicable to cell i ∈ S.

For identifiability, certain elements of θ are constrained, e.g. by sum-to-zero, or corner-point
constraints, so we can rewrite ηi as

ηi = φ + xTi β,
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