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1. Introduction

Mandelbrot-Van Ness fractional Lévy processes (MvN-fLps) have initially been introduced by Marquardt (2006) while
their conditional distributions have been analyzed in Fink (2016). Additionally, Fink and Kliippelberg (2011) considered
MvN-fLp-driven stochastic differential equations (sdes) and constructed explicit solutions based on the general idea of Doss
(1977), Lyons (1994), Zdhle (1998) and Buchmann and Kliippelberg (2006). However, as has been discussed in Section 5.2 of
Fink and Kliippelberg (2011), the theory therein only covers Cox-Ingersoll-Ross (CIR) sdes like

dX, = —kX,dt + o/XdL! or dX; = —kX,dt + o /|X;|dL?

which is not suitable for, e.g., volatility modeling when aiming for a fractional version of the classical Heston setup (cf. Heston
(1993)). Therefore, we would like to obtain an existence and uniqueness result regarding a strictly positive solution of the
general MvN-fLp CIR sde given by

dX, = k(£)(O(t) — X)dt + o (t)/XedLe, te[0,T], Xo=x> 0. (1)
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For a fractional Brownian motion (fBm) as a driving process, this has recently been solved by Schliichtermann and Yang
(2016). In particular, due to the fact that fBm has zero quadratic variation, only «(-)0(-) > 0 is needed to ensure positivity of
a solution — similar to the result which we will obtain below. Additionally and of interest for stochastic correlation models
we shall consider a fractional version of the (quite similar) Jacobi sde as well, i.e.

dX, = k(£)(0(t) — Xo)dt 4+ o (t)y/Xey/T = XedLe, t€[0,T], Xo=x¢€(0,1). )

Throughout the paper, we will work on a complete probability space (£2, %, P) with a given square-integrable MvN-fLp
4= (L‘t’)teR, d € (0, 1/2), without Gaussian part in the sense of Marquardt (2006). In particular, only the long memory case
is included as paths of L? are a.s. Hélder continuous up until d (cf. Theorem 4.3 (i) of Marquardt (2006)). Additionally, to
ensure the existence of integrals, only MvN-fLps with bounded p-variation for 1 < p < 2, similar to Fink and Kliippelberg
(2011), are considered. Therefore, from now on, integration shall be understood in the pathwise Riemann-Stieltjes sense (cf.
Young (1936)).

Section 2 shall provide a general framework for MvN-fLp driven sdes possibly allowing for time-dependent coefficient
functions and therefore extending the setup of Lyons (1994). In Section 3 we shall use these results to prove that suitable
solutions to (1) and (2) exist a.s. in the pathwise sense. A brief simulation study closes the paper.

2. A general Picard-Lindelo6f-type framework

In this section, we want to prove a general Picard-Lindelof-type existence and uniqueness result for MvN-fLp driven sdes
on compact time sets. In order to do that, we need a Banach space for potential solutions to live in: For 1 < p < 2anda < b,
let QI],‘,"“([a, b]) be the set of all continuous functions f on [a, b] with bounded p-variation v,(f, [a, b]), where

n
up(f, [a, b)) := sup Y 1f(x:) — fxi1)P”
o=
with the sup taken over all grids « of [a, b]. Applying Minkowski’s inequality shows that by pointwise addition and scalar

1
multiplication QUIC,"“([a, b]) becomes a R-vector space and (vp(-, [a, b]))? is a seminorm on Qﬁf,"“([a, b]) since, obviously, we
have v,(f, [a, b]) = 0 for every constant function f. To overcome this problem and to obtain a normed vector space we could
consider the quotient space

25" ([a, b])/const([a, b])

where const([a, b]) is the vector space of all constant functions on [a, b]. This approach however causes problems when
considering integral equations — solutions would only be unique up to a.s. constant shifts. Instead we define similar to
Chistyakov and Galkin (1998) an actual norm on 20:°"([a, b]) by

1
I llp =11 5= - 18 + (vp(-, [a, b1)?)

where we will suppress the [a, b] in the notation when the interval is clear. Proposition 7.2 of Chistyakov and Galkin (1998)
now implies that (Ql]f,o“([a, b1), II- llp)is a Banach space. For the considerations to come, we shall need the following technical
lemma.

Lemma 2.1. Let [a, b] be a compact interval, g € QH;"”([a, bl)andf € QH;"”([a, bl)whereq > Oandp > 1withp ' +q~ ' > 1.
For all x € [a, b] we define ¢(x) .= fa * fdg. Then ¢ € 25;°"([a, b]). Moreover we have with ¢ denoting the Riemann zeta function

P
q

1 1\’
vp(¢, [a, b]) < 2P ({1 +¢ <5 + E>} v(f, [a, b])7 + IIfII‘;'up) vy(g, [a, b]).

Proof. The first part follows from Theorem A.3 of Fink and Kliippelberg (2011). For the inequality, we recall that forp > 1
and x, y € R we have |x + y|P < 2P(|x|P + |y|”) and therefore calculate for z; € [x;_1, ;] C [a, b]

Xi P n
/ fdg| =sup)_
Xi-1 o=

i

p

/ g~ 1()lge) — g4-1)1 + FElE0e) — g6 1)

vp($. [a, b]) = sup »
o=t

n . P
<supy ( / (f —f(z))dg| + If(z)] Ig(xf)—g(xf_l)l)
i=1 ) i-1 . )
< Psupy ( / (F —f(z)dg| + f(z)Plgx:) —g(xi_1)|p) .
iz Xi-1
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