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a b s t r a c t

We prove a general Picard–Lindelöf-type framework for stochastic differential equations
driven by Mandelbrot–Van Ness fractional Lévy processes. This allows us to derive the
existence of a fractional Lévy Cox–Ingersoll–Ross and Jacobi model with almost surely
positive, respectively bounded, samples paths.
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1. Introduction 1

Mandelbrot–Van Ness fractional Lévy processes (MvN-fLps) have initially been introduced by Marquardt (2006) while 2

their conditional distributions have been analyzed in Fink (2016). Additionally, Fink and Klüppelberg (2011) considered 3

MvN-fLp-driven stochastic differential equations (sdes) and constructed explicit solutions based on the general idea of Doss 4

(1977), Lyons (1994), Zähle (1998) and Buchmann and Klüppelberg (2006). However, as has been discussed in Section 5.2 of 5

Fink and Klüppelberg (2011), the theory therein only covers Cox–Ingersoll–Ross (CIR) sdes like 6

dXt = −κXtdt + σ
√
XtdLdt or dXt = −κXtdt + σ

√
|Xt |dLdt 7

which is not suitable for, e.g., volatilitymodelingwhen aiming for a fractional version of the classical Heston setup (cf. Heston 8

(1993)). Therefore, we would like to obtain an existence and uniqueness result regarding a strictly positive solution of the 9

general MvN-fLp CIR sde given by 10

dXt = κ(t)(θ (t) − Xt )dt + σ (t)
√
XtdLdt , t ∈ [0, T ], X0 = x > 0. (1) 11
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For a fractional Brownian motion (fBm) as a driving process, this has recently been solved by Schlüchtermann and Yang1

(2016). In particular, due to the fact that fBm has zero quadratic variation, only κ(·)θ (·) > 0 is needed to ensure positivity of2

a solution — similar to the result which we will obtain below. Additionally and of interest for stochastic correlation models3

we shall consider a fractional version of the (quite similar) Jacobi sde as well, i.e.4

dXt = κ(t)(θ (t) − Xt )dt + σ (t)
√
Xt

√
1 − XtdLdt , t ∈ [0, T ], X0 = x ∈ (0, 1). (2)5

Throughout the paper, we will work on a complete probability space (Ω, F ,P) with a given square-integrable MvN-fLp6

Ld = (Ldt )t∈R, d ∈ (0, 1/2), without Gaussian part in the sense of Marquardt (2006). In particular, only the long memory case7

is included as paths of Ld are a.s. Hölder continuous up until d (cf. Theorem 4.3 (i) of Marquardt (2006)). Additionally, to8

ensure the existence of integrals, only MvN-fLps with bounded p-variation for 1 ≤ p < 2, similar to Fink and Klüppelberg9

(2011), are considered. Therefore, from now on, integration shall be understood in the pathwise Riemann–Stieltjes sense (cf.10

Young (1936)).11

Section 2 shall provide a general framework for MvN-fLp driven sdes possibly allowing for time-dependent coefficient12

functions and therefore extending the setup of Lyons (1994). In Section 3 we shall use these results to prove that suitable13

solutions to (1) and (2) exist a.s. in the pathwise sense. A brief simulation study closes the paper.14

2. A general Picard–Lindelöf-type framework15

In this section, wewant to prove a general Picard–Lindelöf-type existence and uniqueness result for MvN-fLp driven sdes16

on compact time sets. In order to do that, we need a Banach space for potential solutions to live in: For 1 ≤ p < 2 and a < b,17

letWcon
p ([a, b]) be the set of all continuous functions f on [a, b] with bounded p-variation vp(f , [a, b]), where18

vp(f , [a, b]) := sup
κ

n∑
i=1

|f (xi) − f (xi−1)|p19

with the sup taken over all grids κ of [a, b]. Applying Minkowski’s inequality shows that by pointwise addition and scalar20

multiplication Wcon
p ([a, b]) becomes a R-vector space and (vp(·, [a, b]))

1
p is a seminorm on Wcon

p ([a, b]) since, obviously, we21

have vp(f , [a, b]) = 0 for every constant function f . To overcome this problem and to obtain a normed vector space we could22

consider the quotient space23

Wcon
p ([a, b])/const([a, b])24

where const([a, b]) is the vector space of all constant functions on [a, b]. This approach however causes problems when25

considering integral equations — solutions would only be unique up to a.s. constant shifts. Instead we define similar to26

Chistyakov and Galkin (1998) an actual norm onWcon
p ([a, b]) by27

∥ · ∥p := ∥ · ∥
[a,b]
p := ∥ · ∥

[a,b]
sup + (vp(·, [a, b])

1
p )28

where we will suppress the [a, b] in the notation when the interval is clear. Proposition 7.2 of Chistyakov and Galkin (1998)29

now implies that (Wcon
p ([a, b]), ∥·∥p) is a Banach space. For the considerations to come, we shall need the following technical30

lemma.31

Lemma 2.1. Let [a, b] be a compact interval, g ∈ Wcon
p ([a, b]) and f ∈ Wcon

q ([a, b])where q > 0 and p ≥ 1with p−1
+ q−1 > 1.32

For all x ∈ [a, b] we define φ(x) :=
∫ x
a fdg. Then φ ∈ Wcon

p ([a, b]). Moreover we have with ζ denoting the Riemann zeta function33

vp(φ, [a, b]) ≤ 2p
({

1 + ζ

(
1
p

+
1
q

)}p

vq(f , [a, b])
p
q + ∥f ∥p

sup

)
vp(g, [a, b]).34

Proof. The first part follows from Theorem A.3 of Fink and Klüppelberg (2011). For the inequality, we recall that for p ≥ 135

and x, y ∈ Rwe have |x + y|p ≤ 2p(|x|p + |y|p) and therefore calculate for zi ∈ [xi−1, xi] ⊆ [a, b]36

vp(φ, [a, b]) = sup
κ

n∑
i=1

⏐⏐⏐⏐⏐
∫ xi

xi−1

fdg

⏐⏐⏐⏐⏐
p

= sup
κ

n∑
i=1

⏐⏐⏐⏐⏐
∫ xi

xi−1

fdg − f (zi)[g(xi) − g(xi−1)] + f (zi)[g(xi) − g(xi−1)]

⏐⏐⏐⏐⏐
p

37

≤ sup
κ

n∑
i=1

(⏐⏐⏐⏐⏐
∫ xi

xi−1

(f − f (zi))dg

⏐⏐⏐⏐⏐+ |f (zi)| |g(xi) − g(xi−1)|

)p

38

≤ 2p sup
κ

n∑
i=1

(⏐⏐⏐⏐⏐
∫ xi

xi−1

(f − f (zi))dg

⏐⏐⏐⏐⏐
p

+ |f (zi)|p|g(xi) − g(xi−1)|p
)

.39
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