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a b s t r a c t

Semi-functional partial linearmodel is a flexiblemodel inwhich a scalar response is related
to both functional covariate and scalar covariates. We propose a quantile estimation of this
model as an alternative to the least square approach. We also extend the proposedmethod
to kNN quantile method. Under some regular conditions, we establish the asymptotic
normality of quantile estimators of regression coefficient. We also derive the rates of
convergence of nonparametric function. Finite-sample performance of our estimation is
compared with least square approach via a Monte Carlo simulation study. The simulation
results indicate that our method is much more robust than the least square method. A real
data example about spectrometric data is used to illustrate that our model and approach
are promising.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Over the last two decades, technological progress inmany subject areas have produced a large number of continuous data 2

with curves or images as the units of observation. Functional data analysis (FDA) encompasses the statistical methodology 3

for such data and has been prevailed. See Müller (2005), Cuevas (2014), Morris (2015), Wang et al. (2016) and Goia and 4

Vieu (2016) for systematic reviews on this subject. The recent monographs by Horváth and Kokoszka (2012) and Hsing and 5

Eubank (2015) offer some mathematical theories of functional data. As the important tool of FDA, functional regression 6

aim to model the relationship between functional (scalar) response and functional (scalar) covariates. Researchers are 7

increasingly interested in functional regression models. See Greven and Scheipl (2017) for a short survey on this field. It 8

is noteworthy that semiparametric functional regression models offer a well-balanced mixture of parametric models and 9

nonparametric models. Semiparametric functional regression models keep flexibility of parametric regression models and 10

overcome sensitivity to dimensional effects of nonparametric approaches. See Goia and Vieu (2014) for a short survey. Semi- 11

functional partial linear regression model is an important semiparametric functional regression model. It can be expressed 12

as Y = m(X) + Z⊤β + ε, where X is functional covariate that taking values in semi-metric space F , m : F → R is a 13

unknown smooth function, Z is p-dimensional randomvector of scalar covariate,β is unknown coefficient of scalar covariate, 14

ε is a random error. The model has been widely used in many fields. Aneiros-Pérez and Vieu (2006) proposed profile least 15

square estimationmethod and derived the asymptotic performances of proposed estimators. Aneiros-Pérez and Vieu (2008) 16

extended themodel to time series area. Ling et al. (2017) proposed a k-nearest-neighbours (kNN) procedure and derived the 17
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asymptotic performances of kNN estimators. Aneiros et al. (2015) extend the model to high-dimensional framework. They1

proposed penalized least-squares method to study the problem of variable selection and derived an oracle property.2

The above-mentioned references are all focused on mean regression. It is known that mean regression is sensitive3

to outliers. Quantile regression is usually recognized as an alternative to mean regression. Quantile regression is more4

robust than mean regression. There is few literatures on quantile-regression-based estimation procedures in the functional5

regression model. Cardot et al. (2005) proposed a spline estimator for functional linear quantile regression model. Chen6

and Müller (2012) studied a estimation method for conditional quantile analysis in the generalized functional regression7

framework. Kato et al. (2012) studied quantile estimation in functional linear quantile regression model. In this paper, we8

study quantile regression of semi-functional partial linear model. To the best of our knowledge, this method has not been9

researched in the scientific literature. Since the model is flexible in practice, quantile regression method is urgently needed,10

which motivates us to investigate quantile regression of estimation of the model.11

In this paper, we use quantile regression method to estimate the nonparametric function and regression coefficient of12

the model. We also extend the proposed method to kNN quantile method. Under some regular conditions, we establish the13

asymptotic normality of estimators of regression coefficient and derive the rates of convergence of nonparametric function.14

A Monte Carlo simulation and an application to spectrometric data show the advantages of our proposed method.15

The article is organized as follows. Section 2 describes our model and our estimation method. Sections 3 and 4 present16

asymptotic properties and finite sample performance of the proposed estimators respectively. Section 5 provides an17

application to spectrometric data. Concluding remarks are provided in Section 6. Technical proofs are given in an Appendix.18

2. Model and estimation19

2.1. Model20

Given quantile level τ ∈ (0, 1), we consider the following semi-functional partial linear quantile regression model21

Y = mτ (X) + Z⊤βτ + ετ , (1)22

where X is functional covariate that taking values in semi-metric space F , and we denote the associated semi-metric by23

d(·, ·),mτ : F → R is a unknown smooth function, Z = (Z1, . . . , Zp)⊤ are p-dimensional random vector of scalar covariates,24

βτ = (β1τ , . . . , βpτ )⊤ are unknown coefficients of scalar covariates, ετ is a random error whose τ th quantile conditional on25

(Z, X) being zero.26

2.2. Estimation27

Suppose that {(Yi, Xi, Zi), i = 1, . . . , n} is a random sample generated from model (1). We estimate coefficients βτ and28

function mτ (·) in model (1), by minimizing the following quantile loss function29

n∑
i=1

ρτ
(
Yi − mτ (Xi) − Z⊤

i βτ
)
, (2)30

where ρτ (s) = s{τ − I(s < 0)}.31

Obviously, (2) contains both nonparametric and parametric component. And they can be estimated by different rates of32

convergence, so we use three-stage procedure. In the first stage, we apply the local constant weighted quantile smoothing33

technique to get an initial estimators. That is, we obtain an initial estimators of mτ (Xj) and βτ by minimizing the following34

local weighted quantile loss function35 ∑
i:i̸=j

ρτ
(
Yi − aτ j − Z⊤

i βτ
)
Kh0 (d(Xi, Xj)), (3)36

where Kh0 (·) = K (·/h0)/h0 and K (·) is a kernel function and h0 is a bandwidth. For convenience, we denote the initial37

estimators of aτ j,βτ by ãτ j, β̃τ . In the second stage, we further improve the efficiency of β̃τ . Specifically, we derive the38

final estimator of βτ by minimizing the following quantile loss function39

n∑
j=1

ρτ
(
Yj − ãτ j − Z⊤

j βτ
)
. (4)40

Denote the final estimator of βτ by β̂τ . In the third stage, we obtain the final estimator ofmτ (x). More concretely, we obtain41

the final estimator ofmτ (x) by minimizing the following local weighted quantile loss function42

n∑
i=1

ρτ

(
Yi − aτ − Z⊤

i β̂τ

)
Kh(d(Xi, x)). (5)43

Denote the final estimators of aτ by âτ . Evidently, âτ are the final estimator ofmτ (x).44
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