Statistics and Probability Letters 141 (2018) 56-61

P e

Contents lists available at ScienceDirect  STATISTICS &
PROBABILITY

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A note on the spectral gap for general harmonic measures on )

spheres

Check for
updates

Yutao Ma?, Xinyu Wang "*

2 School of Mathematical Sciences & Lab. Math. Com. Sys., Beijing Normal University, 100875, Beijing, China
b School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074, PR China

ARTICLE INFO ABSTRACT

Article history: In this paper, we consider general harmonic measures z"? on the unit sphere S"~! in R,
Received 25 October 2017

S : where x € R" with0 < |x| < 1,8 € Rand n > 3. Following the idea in Barthe et al.
Received in revised form 21 May 2018 . n.p .
Accepted 22 May 2018 (2014), we ol?taln the lower bound for the spectral gap of [ For the harmonic measure
Available online 1 june 2018 (B = 0), we improve the lower bound of the spectral gap in Barthe et al. (2014) and we
also improve those in Milman (2015) for general 8 € R.
MSC: © 2018 Elsevier B.V. All rights reserved.
primary 60E15
secondary 39B62
26Dxx

Keywords:
Generalized harmonic measure
Spectral gap

1. Introduction

Let S"~! be the unit sphere in R” (n > 3) with the geodesic d and . the normalized Lebesgue measure on S", i.e.
W = 0On_1/Sn—1, Whereo,,_1ands,_; = rﬁTfnn/z) are the uniform surface measure and total volume respectively on "', For
x € R"with 0 < [x| < 1, let u" be the probability on S"! given by

2

_1 |X|ndu(y), yes1, (1.1)

ly —xI
which is the harmonic measure related to x. This measure characterizes the hitting distribution of the sphere by standard
Brownian motion in R" (see Durrett, 1984; Kakutani, 1944). In Schechtman and Schmuckenschldger (1995), G. Schechtman
and M. Schmuckenschldger proved that uj with any |x| < 1 have a uniform Gaussian concentration. Barthe et al. (2014)
proved that uy satisfies uniform Poincaré inequality. Later Milman in Milman (2015) considered generalized harmonic
measures on sphere, whose form is given by:

1 n—1
%mdﬂo’), yes (1.2)

duy(y)

duyPy) =

for B € R. Z, g is a normalizing constant and 8 = 0 is the harmonic measure given in (1.1).
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We say that ,u,':‘ﬂ satisfies a Poincaré inequality if there exists a finite positive constant C such that for any smooth function
f:S"1 > R, it holds

CVargo) = [ Vs,
X sn—1

where Vg1 is the spherical gradient and |-| is the Euclldean norm. Let Aq(uy ) denote the best constant of the above

inequality, which is also the spectral gap of —cy’ Fin L(1ay ). Here the operator —Cy’ s given as: for any smooth function
onS"™ 1,

LYPfy) = A f () = (n+ B)Vsn-1ly — x| - Vs f(y), y €S,

where Agn-1 is the Laplace-Beltrami operator on S"~! and - is the Euclidean inner product.

When B = 0, Barthe et al. (2014) offered a two sided estimate on A;(u}). Precisely, by a family of orthonormal basis
of the tangent space at any point x on S"~!, they reduced the spectral gap of 1y to that of one dimensional diffusion lel on
[0, ], where

s sin"20
Vi (de) = (1 — [x?) "= . rdo
Sn—1 (14 |x|* — 2|x| cos )2

is the image probability of u; by the mapping y — d(y, e;) with s, = FEQ”T"SZ) Therefore, based on the estimate for
)Ll(vl’;(l), they obtained
n—2
2
Milman in Milman (2015) studled the curvature-dimension of generalized harmonic measure 1y Fandasa consequence he

offered a lower bound for A;(uy ) for g € (=2,3n—7).
In this paper, following the 1dea in Barthe et al. (2014), we establish the following main theorem:

<muy)<n-1 (1.3)

Theorem 1.1. Let uﬁ’ and Aq(1uy ) be as above. We have

n—2, 1f,8<2—norf}>%?
)q(p,;"ﬂ)z W, if <B< Z:?’
";ﬂ—L if2—n<pB<—1.

This lower bounds follows immediately from the comparison (2.2) and Proposition 2.1.

Remark 1.2. When 8 = 0, combining the lower bound in Theorem 1.1 and the upper bound in (1.3), we have
ifn>>5, in—1)<)q D<n-1,
if3<n<5 n—-2<xr(ug)<n-—1.

The lower bound is better than that in (1.3) taken from Barthe et al. (2014).

Remark 1.3. When 8 = 1or 8§ = —n, as proved in Proposition 2.1, we know Al(le‘ ) = n — 1. Thereby it follows from the
comparison (2.2) that

n—2<:(uy By<n—1.

Remark 1.4. When 8 = —n — 2, based on Theorem 1.1 and Proposition 3.1, we know

n—2<apif)<n.

Remark 1.5. When 8 = —2 and n > 4, it follows from Theorem 1.1 and Proposition 3.2 that
gskm&ﬁsn—L

And for n = 3, we have

1< muf) <2

Limited by the lack of information on the normalizing constant Z, g for general 8 € R, we are not able to give a general

upper bound for A1(ui?) via the classical variational formula. Therefore in the third section, we will give upper bound on
)»1(/1)( ) for some spec1a1 B. The next section is devoted to the lower bound of )\.](le‘ﬂ ).
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