A note on the spectral gap for general harmonic measures on spheres

Yutao Ma ${ }^{\text {a }}$, Xinyu Wang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences \&' Lab. Math. Com. Sys., Beijing Normal University, 100875, Beijing, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074, PR China

ARTICLE INFO

Article history:

Received 25 October 2017
Received in revised form 21 May 2018
Accepted 22 May 2018
Available online 1 June 2018

MSC:

primary 60E15
secondary 39B62
26Dxx

Keywords:

Generalized harmonic measure
Spectral gap

Abstract

In this paper, we consider general harmonic measures $\mu_{x}^{n, \beta}$ on the unit sphere S^{n-1} in \mathbb{R}^{n}, where $x \in \mathbb{R}^{n}$ with $0 \leq|x|<1, \beta \in \mathbb{R}$ and $n \geq 3$. Following the idea in Barthe et al. (2014), we obtain the lower bound for the spectral gap of $\mu_{x}^{n, \beta}$. For the harmonic measure ($\beta=0$), we improve the lower bound of the spectral gap in Barthe et al. (2014) and we also improve those in Milman (2015) for general $\beta \in \mathbb{R}$.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let S^{n-1} be the unit sphere in $\mathbb{R}^{n}(n \geq 3)$ with the geodesic d and μ the normalized Lebesgue measure on S^{n-1}, i.e. $\mu=\sigma_{n-1} / s_{n-1}$, where σ_{n-1} and $s_{n-1}=\frac{n \pi^{n / 2}}{\Gamma(1+n / 2)}$ are the uniform surface measure and total volume respectively on S^{n-1}. For $x \in \mathbb{R}^{n}$ with $0 \leq|x|<1$, let μ_{x}^{n} be the probability on S^{n-1} given by

$$
\begin{equation*}
d \mu_{x}^{n}(y)=\frac{1-|x|^{2}}{|y-x|^{n}} d \mu(y), \quad y \in S^{n-1} \tag{1.1}
\end{equation*}
$$

which is the harmonic measure related to x. This measure characterizes the hitting distribution of the sphere by standard Brownian motion in \mathbb{R}^{n} (see Durrett, 1984; Kakutani, 1944). In Schechtman and Schmuckenschläger (1995), G. Schechtman and M. Schmuckenschläger proved that μ_{x}^{n} with any $|x|<1$ have a uniform Gaussian concentration. Barthe et al. (2014) proved that μ_{x}^{n} satisfies uniform Poincaré inequality. Later Milman in Milman (2015) considered generalized harmonic measures on sphere, whose form is given by:

$$
\begin{equation*}
d \mu_{x}^{n, \beta}(y)=\frac{1}{Z_{n, \beta}} \frac{1}{|y-x|^{n+\beta}} d \mu(y), \quad y \in S^{n-1} \tag{1.2}
\end{equation*}
$$

for $\beta \in \mathbb{R} . Z_{n, \beta}$ is a normalizing constant and $\beta=0$ is the harmonic measure given in (1.1).

[^0]We say that $\mu_{x}^{n, \beta}$ satisfies a Poincaré inequality if there exists a finite positive constant C such that for any smooth function $f: S^{n-1} \rightarrow \mathbb{R}$, it holds

$$
C \operatorname{Var}_{\mu_{x}^{n, \beta}}(f) \leq \int_{S^{n-1}}\left|\nabla_{S^{n-1}} f\right|^{2} d \mu_{x}^{n, \beta}
$$

where $\nabla_{S^{n-1}}$ is the spherical gradient and $|\cdot|$ is the Euclidean norm. Let $\lambda_{1}\left(\mu_{x}^{n, \beta}\right)$ denote the best constant of the above inequality, which is also the spectral gap of $-\mathcal{L}_{x}^{n, \beta}$ in $L^{2}\left(\mu_{x}^{n, \beta}\right)$. Here the operator $-\mathcal{L}_{x}^{n, \beta}$ is given as: for any smooth function on S^{n-1},

$$
\mathcal{L}_{x}^{n, \beta} f(y)=\Delta_{S^{n-1}} f(y)-(n+\beta) \nabla_{S^{n-1}}|y-x| \cdot \nabla_{S^{n-1}} f(y), \quad y \in S^{n-1}
$$

where $\Delta_{S^{n-1}}$ is the Laplace-Beltrami operator on S^{n-1} and \cdot is the Euclidean inner product.
When $\beta=0$, Barthe et al. (2014) offered a two sided estimate on $\lambda_{1}\left(\mu_{x}^{n}\right)$. Precisely, by a family of orthonormal basis of the tangent space at any point x on S^{n-1}, they reduced the spectral gap of μ_{x}^{n} to that of one dimensional diffusion $v_{|x|}^{n}$ on $[0, \pi]$, where

$$
v_{|x|}^{n}(d \theta)=\left(1-|x|^{2}\right) \frac{s_{n-2}}{s_{n-1}} \frac{\sin ^{n-2} \theta}{\left(1+|x|^{2}-2|x| \cos \theta\right)^{\frac{n}{2}}} d \theta
$$

is the image probability of μ_{x}^{n} by the mapping $y \rightarrow d\left(y, e_{1}\right)$ with $s_{n-1}=\frac{n \pi^{n / 2}}{\Gamma(1+n / 2)}$. Therefore, based on the estimate for $\lambda_{1}\left(v_{|x|}^{n}\right)$, they obtained

$$
\begin{equation*}
\frac{n-2}{2} \leq \lambda_{1}\left(\mu_{x}^{n}\right) \leq n-1 \tag{1.3}
\end{equation*}
$$

Milman in Milman (2015) studied the curvature-dimension of generalized harmonic measure $\mu_{x}^{n, \beta}$ and as a consequence he offered a lower bound for $\lambda_{1}\left(\mu_{x}^{n, \beta}\right)$ for $\beta \in(-2,3 n-7)$.

In this paper, following the idea in Barthe et al. (2014), we establish the following main theorem:
Theorem 1.1. Let $\mu_{x}^{n, \beta}$ and $\lambda_{1}\left(\mu_{x}^{n, \beta}\right)$ be as above. We have

$$
\lambda_{1}\left(\mu_{x}^{n, \beta}\right) \geq \begin{cases}n-2, & \text { if } \beta \leq 2-n \text { or } \beta>\frac{n-5}{n-1} \\ \frac{(\beta+3)(n-1)}{4}, & \text { if }-1 \leq \beta \leq \frac{n-5}{n-1} \\ \frac{n-\beta}{2}-1, & \text { if } 2-n<\beta<-1\end{cases}
$$

This lower bounds follows immediately from the comparison (2.2) and Proposition 2.1.
Remark 1.2. When $\beta=0$, combining the lower bound in Theorem 1.1 and the upper bound in (1.3), we have

$$
\begin{aligned}
& \text { if } n \geq 5, \quad \frac{3}{4}(n-1) \leq \lambda_{1}\left(\mu_{x}^{n}\right) \leq n-1 \\
& \text { if } 3 \leq n<5, \quad n-2 \leq \lambda_{1}\left(\mu_{x}^{n}\right) \leq n-1
\end{aligned}
$$

The lower bound is better than that in (1.3) taken from Barthe et al. (2014).
Remark 1.3. When $\beta=1$ or $\beta=-n$, as proved in Proposition 2.1, we know $\lambda_{1}\left(v_{|x|}^{n, \beta}\right)=n-1$. Thereby it follows from the comparison (2.2) that

$$
n-2 \leq \lambda_{1}\left(\mu_{x}^{n, \beta}\right) \leq n-1
$$

Remark 1.4. When $\beta=-n-2$, based on Theorem 1.1 and Proposition 3.1, we know

$$
n-2 \leq \lambda_{1}\left(\mu_{x}^{n, \beta}\right) \leq n
$$

Remark 1.5. When $\beta=-2$ and $n \geq 4$, it follows from Theorem 1.1 and Proposition 3.2 that

$$
\frac{n}{2} \leq \lambda_{1}\left(\mu_{x}^{n, \beta}\right) \leq n-1
$$

And for $n=3$, we have

$$
1 \leq \lambda_{1}\left(\mu_{x}^{3, \beta}\right) \leq 2
$$

Limited by the lack of information on the normalizing constant $Z_{n, \beta}$ for general $\beta \in \mathbb{R}$, we are not able to give a general upper bound for $\lambda_{1}\left(\mu_{x}^{n, \beta}\right)$ via the classical variational formula. Therefore in the third section, we will give upper bound on $\lambda_{1}\left(\mu_{x}^{n, \beta}\right)$ for some special β. The next section is devoted to the lower bound of $\lambda_{1}\left(v_{|x|}^{n, \beta}\right)$.

https://daneshyari.com/en/article/7547914

Download Persian Version:

https://daneshyari.com/article/7547914

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mayt@bnu.edu.cn (Y. Ma), wang_xin_yu@hust.edu.cn (X. Wang).

