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a b s t r a c t

We consider semiparametric estimation with nonignorable nonresponse data where only
a parametric response model is assumed. We clarify the relationship of existing estimators
and propose a new estimator which attains the semiparametric efficiency bound and is
robust to model misspecification.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Missing data problems are ubiquitous in many research areas, including econometrics, epidemiology, clinical study, and
psychometrics. If analysts do not properly deal withmissing data, then the resultsmay be biased, which can lead to incorrect
conclusions. Thus, a proper method for analyzing missing data needs to be developed. Also, it is preferable that the required
assumptions in the proposed method be as weak as possible.

The required assumptions are strongly related to the outcomemodel or the response mechanism. In this paper, we focus
on estimation with nonresponse data in which study variable is subject to missingness. Let y be the study variable, x be a
fully observed d-dimensional covariate vector, and r be a response indicator of y, i.e., r takes the value 1 if y is observed,
and takes the value 0 if y is missing. Thus, letting z = (x⊤, y)⊤, we observe (x, y) when r = 1, and observe only x when
r = 0. The response mechanism is defined as the conditional probability π (z) = Pr(R = 1 | z). If the mechanism does not
depend on the study variable y, then it is called missing at random (MAR) and otherwise is called not missing at random
(NMAR) (Little and Rubin, 2002; Kim and Shao, 2013). In the analysis of nonresponse data, MAR (NMAR) is also referred to
as ignorable (nonignorable) missingness.

In this paper, we assume a parametric model on the response mechanism. Let π (z; φ) be the parametric response model,
where φ is a q-dimensional parameter. In classical approaches for NMAR data, an outcome model f (y | x), which is the
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conditional distribution of y given x, is assumed in addition to the response model (Greenlees et al., 1982). This estimator
has been criticized because of its sensitivity to model assumptions. Recently, some semiparametric methods, which do not
require any outcome model, have been proposed.

Semiparametric estimation is mainly divided into two approaches: (i) the empirical likelihood (EL) approach; and (ii) the
moment-based approach. Qin et al. (2002) derived a consistent and asymptotic normal estimator for φ by using a technique
of EL without using any outcome model. Kott and Chang (2010) proposed a moment-based estimator for φ, also without
using any outcome model. Recently, Morikawa and Kim (2016) proposed two moment-based semiparametric adaptive
estimators.

In this paper, we clarify the relationship between the EL estimator and the moment-base estimator, and show that there
exists a specific case for which these two estimators are exactly the same. Also, we propose an estimation method that is
robust to model misspecification. All technical details are given in the Supplementary Material (see Appendix A).

2. Previous semiparametric estimators

Let zi = (xi, yi)⊤ (i = 1, . . . , n) be independently and identically distributed realizations fromunknown distribution F (z),
and ri (i = 1, . . . , n) be independently distributed taking binary values, either 0 or 1, with probability Pr(Ri = 1 | zi) = π (zi)
for i = 1, . . . , n. Also, without loss of generality, assume that the first m elements are observed and that the remaining
(n−m) elements are missing in yi, i.e., ri = 1 for i = 1, . . . ,m and ri = 0 for i = m+ 1, . . . , n. Qin et al. (2002) constructed
the likelihood without using the data when r = 0 by

m∏
i=1

π (φ; zi)dF (zi)
n∏

i=m+1

∫
{1 − π (φ; z)}dF (z) (1)

and discretized the distribution F by wi (i = 1, . . . ,m). The discretized distribution wi can be estimated by maximizing∏m
i=1wi under the following constraints:

wi ≥ 0,
m∑
i=1

wi = 1,
m∑
i=1

wi{π (φ; zi) − W } = 0,

W = Pr(R = 1) =
∫

π (z; φ0)dF (z), and
∑m

i=1wi{h(xi)−h̄n} = 0,whereh : Rd
→ Rp1 (p1 ≥ q−1) is an arbitrary function of x,

and h̄n = n−1∑n
i=1h(xi). The h(x) function helps to improve the efficiency. By introducing Lagrange multipliers, the solution

to the above optimization problem is ŵ−1
i = m[1 + λ⊤

1 {h(xi) − h̄n} + λ2{π (φ; zi) − W }]. By profiling out the unknown F
with the estimates ŵi (i = 1, . . . ,m) in (1) and taking the logarithm, we obtain the profile pseudo-loglikelihood:

ℓ(φ,W , λ1)

=

m∑
i=1

logπ (φ; zi) −

m∑
i=1

log[1 + λ⊤

1 {h(xi) − h̄n} + λ2{π (φ; zi) − W }]

+ (n − m) log(1 − W ),

(2)

where λ2 = (n/m − 1)/(1 − W ). Qin et al. (2002) proposed a semiparametric estimator for φ that maximizes the profile
pseudo-loglikelihood. In the optimization procedure, some computational techniques are needed (see Chen et al., 2002)
because the maximizer of (2) must satisfy ŵi ≥ 0.

On the other hand, under the same assumptions, Kott and Chang (2010) proposed another semiparametric estimator
that solves the following estimating equation:

n∑
i=1

{
ri

π (φ; zi)
− 1

}
g(xi) = 0, (3)

where g : Rd
→ Rq is an arbitrary function of x. This equation is called ‘‘calibration’’ equation in the literature of survey

sampling. A typical choice for g when d = 1 is g(x) = (1, x, . . . , xq−1)⊤. It is hard to decide the control variables in the
calibration condition when d > 1. Also, when the dimension of g(x) is larger than q, say p2, the model is over-identified and
the generalized method of moments (GMM) method (Hansen, 1982) can be used to estimate φ. The GMM estimator can be
constructed by

φ̂ := argmin
φ

n∑
i=1

{
ri

π (φ; zi)
− 1

}2

g(xi)⊤V̂−1(φ)g(xi), (4)

where V̂ (φ) = n−1∑n
i=1{ri/π (φ; zi) − 1}2g(xi)⊗2 and B⊗2

= BB⊤ for any matrix B. The optimizations in (3) and (4) are much
simpler than that of Qin et al. (2002) since there is no constraint in the optimization.



Download English Version:

https://daneshyari.com/en/article/7547915

Download Persian Version:

https://daneshyari.com/article/7547915

Daneshyari.com

https://daneshyari.com/en/article/7547915
https://daneshyari.com/article/7547915
https://daneshyari.com

