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a b s t r a c t

In the absence of acceleration, the velocity formula gives ‘‘distance travelled equals speed
multiplied by time’’. For a broad class of Markov chains such as circulant Markov chains or
randomwalk on complete graphs,we prove a probabilistic analogue of the velocity formula
between entropy and hitting time, where distance is the entropy of theMarkov trajectories
from state i to state j in the sense of Ekroot and Cover (1993), speed is the classical entropy
rate of the chain, and the time variable is the expected hitting time between i and j. This
motivates us to define new entropic counterparts of various hitting time parameters such
as average hitting time or commute time, and prove analogous velocity formulae and
estimates between these quantities.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and main results

Suppose a particle moves from a point i and to another point j. In elementary physics, the classical velocity formula yields
the distance between i and j is equal to the speed of the particle multiplied by the time taken, provided that the particle has
no acceleration. For the class of Markov chains with constant row entropy, the main aim of this note is to prove analogues of
the velocity formula where ‘‘distance’’ is replaced by various entropic quantities, ‘‘speed’’ is the entropy rate associated with
the chain and ‘‘time’’ is substituted by various hitting time related parameters such as average hitting time and commute
time.

Before we discuss our main results in Theorems 1.1 and 1.2, we first fix our notations and provide a quick review on the
relevant background. Our notations follow closely those of Kafsi et al. (2013), Cover and Thomas (2006) and Ekroot and Cover
(1993). Throughout this paper, we consider a discrete-time homogeneous irreducible finite Markov chain X = (Xn)n∈N on
state space X with transition matrix P = (Pi,j)i,j∈X and stationary distribution π = (πi)i∈X . The entropy rate H(X) of the
Markov chain X is defined to be

H(X) := −

∑
i,j∈X

πiPi,j log Pi,j =

∑
i∈X

πiH(Pi,·),

where H(Pi,·) := −
∑

j∈X Pi,j log Pi,j is the one-step local entropy at state i, and the usual convention of 0 log 0 = 0 applies.
H(X) can be broadly interpreted as the average entropy produced by a single step of X , and this interpretation is particularly
useful in understanding our main results. Another entropic quantity that we are interested in is the so-called entropy of
the Markov trajectories Hi,j from state i to state j, as studied by Ekroot and Cover (1993) and Kafsi et al. (2013). Define
a trajectory Ti,j from i to j as a path with initial state i, final state j with no intervening state equal to j. We denote such
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trajectory by Ti,j = ix1x2 . . . xk−1j. The probability of Ti,j is p(Ti,j) := Pi,x1Px1,x2 . . . Pxk−1,j. Writing Ti,j as the set of all possible
trajectories from i to j, Hi,j is then defined to be

Hi,j = Hi,j(X) := −

∑
Ti,j∈Ti,j

p(Ti,j) log p(Ti,j).

We now move on to discuss a few hitting time related parameters of X . Define τj := inf{n ⩾ 0; Xn = j} to be the first
hitting time of the state j, and τ+

j := inf{n ⩾ 1; Xn = j} to be the first return time of the state j. The usual convention applies
in these definitions with inf∅ = ∞.

In our main results below, we primarily consider Markov chains with constant row entropy. In essence, this means that
the Markov chain has zero entropic acceleration as it moves from one state to another since each state gives the same local
entropy H(Pi,·).

Assumption 1.1 (Constant Row Entropy). We assume that X has constant row entropy, i.e. for all i, j ∈ X , H(Pi,·) = H(Pj,·).

Examples of such Markov chains can be found in Section 3, where we apply our results to two-state Markov chains
(Example 3.1), random walk on complete graphs (Example 3.2), rank-one Markov chains (Example 3.3) and simple random
walks on n-cycle (Example 3.4). Note that random walk on regular graphs and circulant Markov chains (Avrachenkov et al.,
2013) also fall into this category.

With the above notations and setting, we are now ready to state our main result. In a broad sense, it can be interpreted
as the entropy of the trajectories from i to j equals the entropy per step times the mean hitting time between the two states.

Theorem 1.1 (Velocity Formula Between Entropy and Hitting Time). Assume that X satisfies Assumption 1.1 with constant row
entropy. For any i, j ∈ X , we have

Hi,j =

{
Ei(τj)H(X), for i ̸= j,
Ei(τ+

i )H(X), for i = j.

Note that for a deterministic Markov chain X , Theorem 1.1 trivially holds since Hi,j = H(X) = 0. Motivated by the
relation between Hi,j and Ei(τj), we proceed to define a few new entropic parameters which are similar to their hitting time
counterparts. We refer interested readers to Levin et al. (2009), Aldous and Fill (2002) and Montenegro and Tetali (2006) for
excellent discussion on these parameters as well as their estimates.

Definition 1.1 (Average Entropy Hav , Average Hitting Time tav and Relaxation Time t rel). The average entropy and average
hitting time are defined to be respectively

Hav
= Hav(X) :=

∑
i,j∈X

πiπjHi,j, tav = tav(X) :=

∑
i,j∈X

πiπjEi(τj).

For reversible Markov chain X , a closely related parameter is the relaxation time

t rel :=
1

1 − λ2
,

where 1 = λ1 > λ2 ⩾ · · · ⩾ λn are the eigenvalues of reversible P arranged in non-increasing order and n := |X |.

Definition 1.2 (Commute Entropy Hc
i,j and Commute Time tci,j). For any i, j ∈ X , the commute entropy and commute time

between i and j are defined to be respectively

Hc
i,j = Hc

i,j(X) := Hi,j + Hj,i, tci,j = tci,j(X) := Ei(τj) + Ej(τi).

Wenote that average entropy and average hitting time are both global parameters, while commute entropy and commute
time are parameters associatedwith a given pair of states. In our secondmain result below,we give velocity formula between
these parameters and carry a few results of hitting time to their entropic counterparts.

Theorem 1.2.

(1) (Commute entropy velocity formula) For any i ̸= j ∈ X , we have

Hc
i,j = tci,jH(X).

Note that this holds in general and does not require the constant row entropy assumption.
(2) (Average entropy velocity formula) Under the constant row entropy Assumption 1.1, we have

Hav
= (tav + 1)H(X).

If in addition X is reversible, then

(t rel + 1)H(X) ⩽ Hav ⩽ ((|X | − 1)t rel + 1) log|X |.
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