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a b s t r a c t

In an optimal variance stopping (O.V.S.) problem one seeks to determine the stopping
time that maximizes the variance of an observed process. As originally shown by Pedersen
(2011), the variance criterion leads to optimal stopping boundaries that depend explicitly
on the initial point of the process. Then, following the lines of Pedersen and Peskir (2016),
we introduce the concept of dynamic optimality for an O.V.S. problem, a type of optimality
that disregards the starting point of the process. We examine when an O.V.S. problem
admits a dynamically optimal stopping time and we illustrate our findings through several
examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Optimal variance stopping (O.V.S.) problems are a new class of optimal stopping problems andwere originally introduced 2

in Pedersen (2011). Given a continuous time real-valued Markov process X := (Xt )t≥0, solving an O.V.S. problem means 3

determining the stopping time which maximizes the right-hand side of 4

V(x) := sup
τ

Varx[Xτ ], (1.1) 5

aswell as computing the value functionV(x). In the above expression, the supremum is taken on the class of stopping times τ 6

of X , such thatEx[X2
τ ] < ∞, and the variance operator Varx[Xτ ] := Ex[X2

τ ]−E2
x [Xτ ] is definedwith respect to the probability 7

measure Px, under which X starts at x. The quadratic dependence of the variance on the expectation makes (1.1) different 8

from a standard optimal stopping problem of the type 9

V (x) := sup
τ

Ex[G(Xτ )], (1.2) 10

where the expectation of some suitable gain functionG(·) enters linearly (see, e.g., Peskir and Shiryaev, 2006, Shiryaev, 1978). 11

An outstanding consequence of this fact is that while in (1.2) the state space of X can be partitioned into one continuation 12

set, where V > G, and one stopping set, where V = G, and, therefore, these sets are independent of the initial point x of X , 13

in (1.1) this does not hold true anymore. In other words, the stopping boundaries in an O.V.S. problem depend on x, as the 14

results in Pedersen (2011, Sections 3–5) show. 15

The dependence of the stopping boundaries on the initial point of the process was also observed in Pedersen and Peskir 16

(2016), where some mean–variance optimal stopping problems are studied. The authors referred to the optimality tied to 17
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the initial value of the process as static to distinguish it from what they called dynamic optimality. This type of optimality1

arises from the fact that the change of the initial point of the process (and, in turn, the change of the stopping boundary)2

yields a different optimal stopping time; the new values of the process lead therefore to solve, dynamically in time, new3

optimal stopping problems, with the aim to stop when there is no more chance to find a stopping time that could return a4

better value in the future.5

To the best of our knowledge, all the literature onO.V.S. problems dealswith the static optimality only (see Definition 2.1).6

In Pedersen (2011), a general method for solving (1.1) is provided and explicit solutions when X is a geometric Brownian7

motion, a square-root process and a Jacobi diffusion are obtained; in Gad and Pedersen (2015), problem (1.1) is studied8

under the assumption that X is an exponentiated Lévy process and it is shown that, in some cases, randomized stopping9

times (namely stopping times with respect to the filtration generated by X and an independent uniform random variable)10

might solve (1.1) and achieve a higher variance. In Buonaguidi (2015) another solution method to (1.1) is analyzed and11

is used in Buonaguidi (2018) to solve the examples from Pedersen (2011); moreover, in Buonaguidi (2018) a possible12

application to trading strategies of an O.V.S. problem is discussed. In Gad and Matomaki (2016), it is shown that for some13

diffusion processes an optimal solution can be obtained as mixtures of two hitting times and the strong connection between14

problem (1.1) and the game theory is disclosed.15

The novelty of this paper is the study of dynamically optimal stopping times in theO.V.S. problem (1.1) (seeDefinitions 2.216

and 2.3). On one hand, we show that when X is a non-trivial (i.e., non-deterministic) stochastic process with no killing or17

absorbing boundaries, then it is dynamically optimal not to stop at all; on the other hand, when killing or absorption are18

allowed, denoted by ξ the life time of the process after which it remains trapped in the killing or absorbing state, we show19

that, conditionally to the event {ξ < ∞}, ξ is dynamically optimal. These results are consistent with the fact that if we solve20

(1.1) dynamically in time, in the first case, there is no stopping time after which the observed process ceases its variability,21

while, in the second case, this stopping time exists and is precisely ξ .22

This paper is structured as follows: in Section 2, along the lines of Pedersen and Peskir (2016), we define the concepts23

of static and dynamic optimality, as well as the concept of dynamic optimality conditionally to {ξ < ∞}, and we provide24

our main results. In Section 3, we illustrate our findings by means of several examples, including Lévy processes, Brownian25

motions absorbed at the origin, Bessel processes and population growth and genetic diffusion models. Finally, in Section 4,26

we provide a financial interpretation of the results obtained in the previous sections.27

2. Main results28

We begin this section by defining the static and dynamic optimality discussed in the Introduction: we adapt the29

definitions used in Pedersen and Peskir (2016) to the O.V.S. problem (1.1). In the sequel, we denote by S the state space30

of X .31

Definition 2.1. A stopping time τ ⋆ is statically optimal in (1.1) for x ∈ S given and fixed, if there is no other stopping time τ32

such that33

Varx[Xτ ] > Varx[Xτ⋆ ].34

From this definitionwe see that the statically optimal stopping time coincides with the stopping time thatmaximizes the35

right-hand side of (1.1). Then, the optimal stopping times derived in Buonaguidi (2015, 2018), Gad and Matomaki (2016),36

Gad and Pedersen (2015) and Pedersen (2011) must be understood in the static sense. We observe that the static optimality37

concerns a given and fixed initial value x of X; in particular, as shown in the aforementioned articles, changing x implies a38

change of the stopping boundaries (which depend on x) and hence a variation of the statically optimal stopping time (see39

Section 3.1 for an explicit example). Then, we can consider the situation where (1.1) is approached dynamically in time,40

in the sense that each new position of the process leads to solve a new O.V.S. problem. The next definition formalizes this41

concept.42

Definition 2.2. A stopping time τ ⋆ is dynamically optimal in (1.1) if there is no other stopping time τ such that43

Px
(
VarXτ⋆ [Xτ ] > 0

)
> 0, (2.1)44

for some x ∈ S.45

Dynamic optimality is therefore equivalent to determining the stopping time τ ⋆ after which there is no chance that some46

variability occurs in the future. Then, as also observed in Pedersen and Peskir (2016), while the static optimality remembers47

the past through the initial value x of X , the dynamic optimality disregards it and looks ahead only. The next theorem shows48

that if X is trivial, then it is dynamically optimal to stop at once; instead, if X is a proper stochastic process, then it is never49

dynamically optimal to stop.50

Theorem 2.1. (i) Let h : R+
× S → S be a deterministic function. If Xt = h(t, x) Px-a.s, for any x ∈ S and t ≥ 0, then the51

minimal dynamically optimal stopping time in (2.1) is τ ⋆
= 0.52

(ii) Let X be non-deterministic. Then, there is not a dynamically optimal stopping time τ ⋆ satisfying (2.1) such that Px(τ ⋆ <53

∞) > 0, for all x ∈ S.54
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