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a b s t r a c t

This paper proposes construction algorithms for asymmetric nested and sliced orthogonal
arrays with any strength. Based on group projection and algebraic techniques, families
of asymmetric nested and sliced orthogonal arrays have been obtained. Examples are
provided to illustrate these results.
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1. Introduction

With the rapid development of computer technology, some physical experiments are simulated with complex computer
programs. Space-filling designs are desirable for conducting computer experiments. Nested orthogonal arrays (NOAs) are
useful in obtaining space-filling designs when an experimental situation consists of two experiments, the expensive one of
higher accuracy (HE) to be nested in a larger and relatively inexpensive one of lower accuracy (LE). It is intuitively appealing
to use nested space-filling designs to collect data from a pair of HE and LE for the purpose of building an accurate prediction
model for the HE, see Qian et al. (2014) and Zhao and Zhao (2015).

Symmetric NOAs have been analyzed by Mukerjee et al. (2008), Qian et al. (2009a, b) and Sun et al. (2014). For
asymmetric cases, Qian et al. (2014) showed the nested lattice samples were guaranteed to achieve uniformity in two or
three dimensions only. In this work, we extend the above results and construct asymmetric NOAs with any strength, which
generate asymmetric nested lattice samples with better space-filling properties.

On the other hand, Qian and Wu (2009) proposed sliced orthogonal arrays (SOAs) for space-filling designs with both
qualitative and quantitative factors. When collapsed over the qualitative levels, the points of quantitative factors achieve
attractive stratification. Recently, Ai et al. (2014) constructed sliced space-filling designs for symmetric SOAs. Li et al. (2015)
considered asymmetric balanced sliced orthogonal arrays. However, their asymmetric results only achieved twodimensional
uniformity. In order to overcome this limitation, we construct asymmetric sliced orthogonal arrays with any strength that
can accommodate nesting with an arbitrary number of layers.
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The remainder is organized as follows. Some basic definitions and notations are reviewed in Section 2. Construction
algorithms of asymmetric NOAs and SOAs are provided in Section 3. In Section 4, some families of asymmetric NOAs and
SOAs are obtained and examples are given to illustrate the main results. A short conclusion is in Section 5.

2. Preliminaries and notations

An orthogonal array (OA) with n runs, m factors, s1, . . . , sm symbols and strength g (1 ≤ g ≤ m), denoted by
OA(n,m, s1 × · · · × sm, g), is an n×mmatrix with symbols in the ith column from a finite set of si ≥ 2 (1 ≤ i ≤ m) symbols,
such that in every n × g submatrix, all possible combinations of symbols appear equally often as a row. In particular, if
s1 = · · · = sm = s, then the array reduces to a symmetric OA, denoted simply by OA(n,m, s, g). Otherwise, the array is an
asymmetric OA.

From Mukerjee et al. (2008), we introduce the concept of NOAs. Let A be an OA(n,m, s1 ×· · ·× sm, g) and ρi be a series of
projections for i = 1, . . . ,m. Suppose B ⊂ A and becomes anOA(n1,m, t1×· · ·×tm, g) after the si levels of the si-level factors
are collapsed to ti levels according to some level-collapsing projection ρi for i = 1, . . . ,m. Then B is nested in A, which is
called a nested orthogonal array (NOA), denoted by NOA(A, B), where n1 < n, ti < si. If s1 = · · · = sm = s, t1 = · · · = tm = t
and t < s, then one obtains a symmetric NOA. Otherwise, the array is an asymmetric NOA.

For the sliced orthogonal array, suppose that rows of A are partitioned into v subarrays of n2 rows, denoted by A1, . . . , Av .
Further, each Aj (j = 1, . . . , v) becomes an OA(n2,m, t1 × · · ·× tm, g) after the si levels of the si-level factors are collapsed to
ti levels according to some level-collapsing projection ρi for i = 1, . . . ,m. Then A, or more precisely (A′

1, . . . , A
′
v)

′, is called a
sliced orthogonal array (SOA). Provided that si’s are not all the same, it is an asymmetric SOA.

Now consider two matrices A = (Aij) = (a1, . . . , as) with order r × s and B = (bij) = (b1, . . . , bv) with order u × v,
respectively. The Kronecker sum of A and B is an ru × sv matrix, defined by A ⊕ B = (aijJ + B), where J is the u × v matrix
of ones. Especially, if s = v, we introduce an operation A⊕cB = (a1 ⊕ b1, . . . , as ⊕ bs), called column-wise Kronecker sum
of A and B. The above operations will be used to construct asymmetric NOAs and asymmetric SOAs in the next sections.

Following the terminology in factorial experiments, it is convenient to call the columns of an arbitrary OA(n,m, s1 ×· · ·×

sm, g) factors, denoted by F1, . . . , Fm. Let GF (s) be a Galois field of order s with 0 and 1 denoting the identity elements of
GF (s) with respect to the operations of addition and multiplication. For the factor Fi (1 ≤ i ≤ m), define ui columns, say
pi1 , . . . , piui

, each of order k × 1 with elements from GF (s). Thus, for the m factors, we have
∑m

i=1ui columns in all. Let H be
an sk × k matrix whose rows are all possible k-tuple over GF (s) and Pi = (pi1 , . . . , piui

) for 1 ≤ i ≤ m. Suen et al. (2001)
provided a method to construct OA(sk,m, (su1 ) × (su2 ) × · · · × (sum ), g).

Lemma 1. Consider a k ×
∑m

i=1ui matrix C = (P1, P2, . . . , Pm) such that for every choice of g matrices Pi1 , . . . , Pig from
P1, . . . , Pm, the k×

∑g
j=1uij matrix (Pi1 , . . . , Pig ) has full column rank over GF (s). Then an OA(sk,m, (su1 )× (su2 )×· · ·× (sum ), g)

is constructed.
Lemma 1 showed the above orthogonal array is constructed by HC with the operations of addition and multiplication

over GF (s), where the ui columns of Fi form a new column of sui symbols for 1 ≤ i ≤ m. Based on the OA, we provide some
construction algorithms for NOAs and SOAs in the next section.

3. Construction algorithms of asymmetric NOAs and SOAs

Sun et al. (2014) presented the subgroup projection and other algebraic techniques for constructing symmetric NOAs and
SOAs. In this section, we extend the methods to construct asymmetric NOAs and SOAs. For convenience, we only consider
asymmetric cases with two layers, which can be easily generalized to general layers. For a finite set A of size |A|, put its
elements in a column vector VA with zero being placed as the first entry if included. Based on Lemma 3 of Sun et al. (2014),
the following lemma provides a way for decomposition of Galois field.

Lemma 2. Suppose T is a Galois field GF (pλ), where p is a prime and λ is a positive integer. If T1 is a subgroup of T under operation
‘‘+’’, then there exists a subgroup T2 of T under operation ‘‘+’’ satisfying VT = VT1 ⊕ VT2 .

By Lemma 2, any γ ∈ T is uniquely expressed as γ = β1 + β2, where βi ∈ Ti for i = 1, 2. Define a projection ρ: T → T1
as ρ(γ ) = ρ(β1 + β2) = β1, called a subgroup projection. For the subgroup projection ρ and γ1, γ2 ∈ T , we have

ρ(γ1 + γ2) = ρ(γ1) + ρ(γ2). (1)

In order to construct symmetrical NOAs, Sun et al. (2014) provided properties of the projection ρ. It is easy to be extended
to asymmetrical cases.

Lemma 3. Suppose si = pλi for i = 1, 2, where p is a prime and 1 ≤ λ2 < λ1. If A is an OA(sk1,m, (su11 ) × · · · × (sum1 ), g) based
on GF (s1), ρ is the subgroup projection from GF (s1) to GF (s2), then ρ(A) is an OA(sk1,m, (su12 ) × · · · × (sum2 ), g) based on GF (s2).

Based on Lemmas 1–3, we introduce the following algorithm, which is used to construct both of asymmetrical NOAs and
SOAs.

Construction algorithm:
Let T = GF (s1) with s1 = pλ1 elements, T1 has s2 = pλ2 elements and is a subgroup of T under operation ‘‘+’’, where

1 ≤ λ2 < λ1. There are four steps for constructing asymmetrical NOAs and SOAs as follows:
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