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Abstract

Sufficient conditions are found under which randomly stopped sums, randomly stopped
maximums, and randomly stopped maximums of sums are distributed according to O-
exponential laws. It is supposed that the basic random variables {ξ1, ξ2, . . .} are real valued
and not necessarily identically distributed, whereas the counting random variable η is inte-
ger valued, nonnegative, and not degenerate at zero.
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1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of real-valued random variables (r.v.s), identically or nonidenti-
cally distributed, and let η be a counting r.v. independent of sequence {ξ1, ξ2, . . .}. As usual,
an r.v. η is called a counting r.v. if it is nonnegative, integer valued, and not degenerate at
zero.

We denote by S0 = 0, Sn = ξ1 + · · ·+ ξn, n > 1, the partial sums, and by Sη = ξ1 + · · ·+ ξη

the randomly stopped sum of r.v.s {ξ1, ξ2, . . .}. Similarly, let ξ(n) = max{0, ξ1, . . . , ξn}, n >
1, ξ(0) = 0, and let ξ(η) = max{0, ξ1, . . . , ξη} be the randomly stopped maximum of r.v.s
{ξ1, ξ2, . . .}. Finally, let S(n) = max{S0, S1, . . . , Sn}, n > 0, and let S(η) = max{S0, S1, . . . , Sη}
be the randomly stopped maximum of sums {S0, S1, S2, . . .}.

The distribution functions (d.f.s) of r.v.s Sη, ξ(η), and S(η) can be expressed as follows:

FSη(x) := P(Sη 6 x) =
∞∑

n=0

P(Sn 6 x)P(η = n),

Fξ(η)
(x) := P(ξ(η) 6 x) =

∞∑

n=0

P(ξ(n) 6 x)P(η = n),

FS(η)
(x) := P(S(η) 6 x) =

∞∑

n=0

P(S(n) 6 x)P(η = n).
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