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a b s t r a c t

Weconsider the problemof functional classificationwhen the covariatemaybeunavailable
(unobservable) on some subsets of its domain. Given the observed fragments of the
functional covariates, we propose a strongly consistent nonparametric classifier based on
local averaging.
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1. Introduction

This article focuses on the following standard two-group functional supervised classification problem. Let (X, Y ) be a
random pair, where X is a functional covariate taking values in a metric space (F, ρ) and Y ∈ {0, 1}, called the class
variable, has to be predicted based on X. In classification one seeks to find a function (a classifier) g : F → {0, 1} whose
misclassification error, i.e., the probability of incorrect prediction, L(g) = P{g(X) ̸= Y }, is as small as possible. Similar to the
case where F = Rd, here the best classifier is given by

gB(x) =

{
1 if P{Y = 1|X = x} >

1
2

0 otherwise,
(1)

i.e., gB has the smallest error probability given by L(gB) = infg:F→{0,1}P{g(X) ̸= Y }; see, for example, Cérou and Guyader
(2006), Abraham et al. (2006), andDevroye et al. (1996, Ch. 2). In practice the distribution of (X, Y ) is almost always unknown
and therefore finding the function gB is impossible. However, one typically has available n independent and identically
distributed (iid) observations, i.e., the data, Dn := {(X1, Y1), . . . , (Xn, Yn)}, where (Xi, Yi)

iid
= (X, Y ), i = 1, . . . , n,. The aim

of classification is to construct a function ĝ , based on the data Dn, whose probability of error, defined by Ln (̂g) = P {̂g(X) ̸=

Y |Dn}, is in some sense small. We say a classification rule ĝ is consistent if E[Ln (̂g)] → L(gB), as n → ∞. If Ln (̂g) → L(gB),
with probability one, then ĝ is said to be strongly consistent.

Many different methods have been proposed in the literature for the classification of functional data. These methods
may be divided roughly into two approaches. (I) Those methods that are based on the entire curve X; these include the
kernel classification method of Ferraty and Vieu (2003), the naive kernel classifier of Abraham et al. (2006), the nearest
neighbor approach of Cérou and Guyader (2006), the depth-based classifier of López-Pintado and Romo (2006), the robust
functional classification of Cuevas et al. (2007), the wavelet approach of Chang et al. (2014), and the work of Meister (2016)
on the optimality properties of kernel regression and classification for functional data. (II) Those approaches that are based
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on the classification of filtered curves or, perhaps, a finite set of points on the curves X . More specifically, when X belongs
to an infinite-dimensional separable Hilbert space with inner product ⟨·, ·⟩ then each predictor Xi can be expressed by the
expansion Xi =

∑
∞

j=1ξijφj, where ξij = ⟨Xi, φj⟩, and where {φ1, φ2, . . . } is a complete orthonormal basis for the underlying
space. Here, the random variables ξi1, ξi2, . . . are viewed as the surrogates for the datum Xi in the sense that estimation
based on Xi is equivalent to that based on ξi1, ξi2, . . . . Truncating the infinite sum after d terms, one is in effect replacing
Xi by a d-dimensional vector (ξi1, . . . , ξid), where d typically increase with n. Relevant work along these lines includes the
signal discrimination method of Hall et al. (2001), the functional classification method of Biau et al. (2005), the classification
of gene expression data of Leng and Müller (2006) as well as that of Song et al. (2008), the wavelet approach of Berlinet et
al. (2008), and the componentwise classification approach of Delaigle et al. (2012).

Our approach in this paper is more in the spirit of (I) above, where classification is carried out based on the entire curve
(instead of filtered curves), except that we allow for some segments of the covariate curve X to be missing. In the rest of this
paper we develop a framework for classification with possibly incomplete covariate curves; this is discussed in Section 2.
Here we present the form of the optimal classifier for the current setup and proceed to construct strongly consistent kernel
classifiers. A supplementary file available online contains the proofs and additional details. Numerical examples are given
in Section 3.

2. Incomplete data

2.1. The setup

The great majority of existing functional classification methods are based on the implicit assumption that the covariate
functions are fully observable on their domain. Here we consider the situation where parts of Xmay be unavailable, i.e., the
situation where one may only be able to observe certain fragments of the full curve X. Results along these lines are available
for the simpler case of X ∈ Rp, p > 1; see, for example, Pawlak (1993), Mojirsheibani and Montazeri (2007), Reese and
Mojirsheibani (2017), and Demirdjian and Mojirsheibani (2017).

Let (Ω,A, P) be the underlying probability space. We take F to be the space of absolutely integrable functions defined
on an interval of the real line, i.e., X is a random function on (Ω,A, P) with values (sample paths) in L1(I), where I is an
interval on the real line. However, instead of observing the full curve X : Ω → L1(I), one might only be able to observe
the fragment(s) of the curve denoted by X|s, i.e., the restriction of X(t) to t ∈ s, for some s ⊆ I. To present the structure
of the missing patterns (in the functional covariates), we follow the missing data setup of Bugni (2012). More specifically,
we assume that each covariate function X is such that for a fine enough partition of I into J < ∞ subintervals I1, . . . , IJ ,
each sample function of X is either completely observed or completely unobserved within each of these J subintervals.
Here Ii ∩ Ij = ∅ whenever i ̸= j, and ∪

J
j=1Ij = I. Examples of such functional variables can be found in, for example,

Bugni (2012, page 965). In what follows, we also denote by sk the subset of I where a covariate corresponding to the
kth missing pattern is observed. Without loss of generality we put s1 = I, which corresponds to the case where the
functional predictor X is observable over the entire interval I. Next, let∆ be the {1, . . . ,M}-valued random variable defined
by ∆ = k, if pattern k is observed, k = 1, . . . ,M, where M < 2J ; in practice M is substantially smaller that 2J . Thus if
I{∆ = k} = 1 then one observes X|sk , i.e., the restriction of X(t) to t ∈ sk. If we denote the observed functional covariate by
X∗ (which is one, and only one, of X|s1 , . . . ,X|sM ) then one can equivalently write X∗

=
∑M

k=1I{∆ = k} · X|sk . We can also
represent the data according to Dn = {(∆1,X∗

1, Y1), . . . , (∆n,X∗
n, Yn)}. In this paper, we allow the presence of incomplete

covariates (incomplete curves) in both the data Dn and the unclassified observation X. In passing we also note that since
sk, k = 1, . . . ,M , is the subset of I associated with the kth missing pattern, a non-data-based classifier corresponding to
pattern k is any function of the form gk : L1(sk) → {0, 1}. Thus, with M missing patterns, any classifier is necessarily of the
form

ψ(X∗,∆) =

M∑
k=1

I{∆ = k} · gk(X|sk ), (2)

for some gk : L1(sk) → {0, 1}, k = 1, . . . ,M . Now suppose that gk is the best classifier corresponding the kthmissing pattern,
i.e.,

gk(x|sk ) =

{
1 if E

[
Y
⏐⏐X(t) = x(t), ∀t ∈ sk

]
>

1
2

0 otherwise.
(3)

Then one may be tempted to considerψ in (2), with gk’s as in (3), as an intuitively reasonable candidate for the theoretically
optimal classifier in the current setup with missing covariate segments. Unfortunately, this is not true in general. To find the
optimal classifier, let

Tk(x|sk ) = E
[
(2Y − 1)I{∆ = k}

⏐⏐X(t) = x(t), ∀t ∈ sk
]
, k = 1, . . . ,M, (4)

and define the classifier

ψB(X∗,∆) =

M∑
k=1

I{∆ = k} · I{Tk(X|sk ) > 0}, (5)
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