S TAPRO: 8206 \vert pp. 1–8 (col. fig: NIL)

[Statistics and Probability Letters xx \(xxxx\) xxx–xxx](https://doi.org/10.1016/j.spl.2018.03.015)

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

The Lambert *W* function, Nuttall's integral, and the Lambert law

Anthony G. Pakes

Department of Mathematics & Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia

ARTICLE INFO

Article history: Received 15 December 2017 Received in revised form 21 March 2018 Accepted 21 March 2018 Available online xxxx

MSC: primary 60E07 secondary 33B30 44A10 60E10

Keywords: Lambert *W* function Infinite divisibility Bernstein function

1. Introduction ¹

The principal Lambert function, denoted here by *W*(*s*), is defined as the unique real-valued concave increasing solution ² to the functional equation 3

$$
We^{W} = s. \tag{1.1}
$$

This solution exists for $s\in[-e^{-1},\infty)$ and it satisfies $W(-e^{-1})=-1,$ $W(0)=0,$ $W'(0)=1$ and $W(s)\sim\log s$ as $s\to\infty.$ The $s\in[-1,+\infty)$ Lambert-*W* arises in various specific models by providing solutions to certain differential and functional equations. [Corless](#page--1-0) 6 [et](#page--1-0) [al.](#page--1-0) [\(1996\)](#page--1-0) is the standard account of properties and applications of *W*. In addition, [Brito](#page--1-1) [et](#page--1-1) [al.](#page--1-1) [\(2008\)](#page--1-1), [Caillol](#page--1-2) [\(2003\)](#page--1-2) and ⁷ [Valluri](#page--1-3) [et](#page--1-4) [al.](#page--1-4) [\(2000\)](#page--1-3), amongst others, describe a variety of applications. The standard reference [Olver](#page--1-4) et al. [\(2010\)](#page--1-4) classifies $\frac{8}{100}$ *W*(*s*) as 'elementary' and it lists some of its properties. ⁹

The most interesting property of $W(s)$ for probability theory is that it is a Bernstein function, written $W \in \mathcal{B}$, and meaning 100 that it has the integral representation 11

$$
W(s) = \int_0^\infty \left(1 - e^{-sv}\right) \Omega(dv),\tag{1.2}
$$

where Ω is a Lévy measure, i.e., $\Omega(\{0\})=0$ and \int_0^∞ ($v\wedge 1)$ Ω($dv) < \infty$. It follows that there is a subordinator, i.e., a positivevalued Lévy process ($\Lambda_t:t\geq 0$) which necessarily has increasing sample paths with $\Lambda_0=0$, and whose one-dimensional 14

<https://doi.org/10.1016/j.spl.2018.03.015> 0167-7152/© 2018 Elsevier B.V. All rights reserved.

A B S T R A C T

This paper offers a new proof that the principal Lambert *W*-function *W*(*s*) is a Bernstein function. The proof derives from a known integral evaluation and leads to a more detailed description of *W*(*s*) as a Thorin–Bernstein function with a real-variable description of the Thorin measure, and refinements of some known properties of the Lambert distribution. © 2018 Elsevier B.V. All rights reserved.

E-mail address: [tony.pakes@uwa.edu.au.](mailto:tony.pakes@uwa.edu.au)

2 *A.G. Pakes / Statistics and Probability Letters xx (xxxx) xxx–xxx*

STAPRO: 8206

laws satisfy

$$
E\left(e^{-s\Lambda_t}\right)=e^{-tW(s)}=\left(\frac{W(s)}{s}\right)^t.
$$

There are several published proofs of $(1,2)$. Two of them depend ultimately on complex variable methods and they yield ⁴ deeper results than the real-variable proofs. [Kalugin](#page--1-5) [et](#page--1-5) [al.](#page--1-5) [\(2012\)](#page--1-5) show that *W*(*s*)/*s* has a Stieltjes transform representation, ⁵ implying that *W*(*s*) is a complete Bernstein function, written *W* ∈ CB, and meaning that the Lévy measure Ω has a completely monotone density, denoted here by ω(*y*). [Pakes](#page--1-6) [\(2011\)](#page--1-6) independently shows that *W*′ ⁶ (*s*) has a Stieltjes transform *representation and hence that* $W(s)$ *is Thorin Bernstein, written* $W \in \mathcal{TB}$ *, and meaning that* $\gamma\omega(y)$ *is completely monotone.* 8 Clearly $T B \subset C B$ $T B \subset C B$ $T B \subset C B$ and the inclusion is strict. See [Schilling](#page--1-7) et [al.](#page--1-7) [\(2012\)](#page--1-7) for much more about these Bernstein function classes.

9 The property $W \in \mathcal{TB}$ has the significant consequence that the probability laws $L(\Lambda_t)$ are self-decomposable (S.D.) for 10 each $t > 0$, an aspect explored by [Pakes](#page--1-6) [\(2011\)](#page--1-6). We remark that this S.D. property in fact is an immediate consequence of ¹¹ the differentiation identity

$$
W'(s) = \frac{W(s)}{s(1+W(s))}
$$
\n(1.3)

13 *and* knowing that $W \in \mathcal{B}$. We show this in Section [4.](#page--1-8)

¹⁴ It is expedient at this point to summarise in the following proposition the results in [Pakes](#page--1-6) [\(2011\)](#page--1-6) which are relevant to ¹⁵ this study.

Proposition 1.1. (i) *There is a probability measure* ν *satisfying* $supp(\nu) = [e^{-1}, \infty)$ *and*

$$
W'(s) = \int_{e^{-1}}^{\infty} \frac{v(dy)}{y+s}.
$$
\n(1.4)

¹⁸ *Hence* ν *is the Thorin measure of W , i.e.,*

$$
W(s) = \int_{e^{-1}}^{\infty} \log(1 + s/y)\nu(dy)
$$
 (1.5)

²⁰ *yielding the Bernstein representation*

$$
W(s) = \int_0^\infty \left(1 - e^{-sv}\right) \omega(v) dv,
$$
\nwhere

\n
$$
W(s) = \int_0^\infty \left(1 - e^{-sv}\right) \omega(v) dv,
$$
\n(1.6)

²² *where*

 $\omega(v) = v^{-1} \int_{0}^{\infty}$ *e*−¹ $\omega(v) = v^{-1} \int e^{-vy} v(dy).$ (1.7)

²⁴ (ii) *Define* $\Lambda = \Lambda_1$ and let ε , U and Z be independent random variables having, respectively, the standard exponential and 25 *uniform laws and, for* $z \ge 0$ *,*

²⁷ *Then*

$$
\Lambda \stackrel{d}{=} \varepsilon U/Z. \tag{1.8}
$$

 $P(Z \leq z) = 1 (z \geq e^{-1}) \int_0^z$

 $P(Z \le z) = 1 (z \ge e^{-1}) \int y^{-1} \nu(dy).$

²⁹ *In addition,*

$$
E(Z^{-n}) = \frac{(n+1)^n}{n!}, \qquad P(\Lambda > z) = o\left(z^{-\frac{1}{2}}e^{-z/e}\right), \quad (z \to \infty). \tag{1.9}
$$

³¹ (iii) *The S.D. law L*(Λ) *has the background driving Lévy process (BDLP) representation*

0

$$
\Lambda = \int_0^\infty e^{-t} dC_t,
$$

 $_3$ \cdots where (C $_t$: $t\geq 0$) is a compound Poisson process with unit jump rate and jump increments having the density function y $\omega(y)$. ³⁴ *Finally,*

$$
W'(s) = E\left(\frac{Z}{Z+s}\right). \tag{1.10}
$$

³⁶ Part (i) comprises the essence of Theorem 3.1 in [Pakes](#page--1-6) [\(2011\)](#page--1-6), in particular, equations (3.7), (3.8), (3.1) and (3.10) there. 37 Part (ii) is covered by Theorem (3.4) and its proof and Part (iii) is Theorem 3.3, both in [Pakes](#page--1-6) [\(2011\)](#page--1-6). ³⁸ In this paper we refine many of the properties listed in [Proposition 1.1](#page-1-0) by using the integral evaluation

$$
\int_0^{\pi} (\phi(x))^r dx = \frac{\pi r^r}{\Gamma(1+r)}, \qquad (r \ge 0)
$$
\n(1.11)

Please cite this article in press as: Pakes A.G., The Lambert *W* function, Nuttall's integral, and the Lambert law. Statistics and Probability Letters (2018), https://doi.org/10.1016/j.spl.2018.03.015.

Download English Version:

<https://daneshyari.com/en/article/7548032>

Download Persian Version:

<https://daneshyari.com/article/7548032>

[Daneshyari.com](https://daneshyari.com)