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a b s t r a c t

This paper offers a new proof that the principal Lambert W -function W (s) is a Bernstein
function. The proof derives from a known integral evaluation and leads to a more detailed
description of W (s) as a Thorin–Bernstein function with a real-variable description of the
Thorin measure, and refinements of some known properties of the Lambert distribution.
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1. Introduction 1

The principal Lambert function, denoted here by W (s), is defined as the unique real-valued concave increasing solution 2

to the functional equation 3

WeW = s. (1.1) 4

This solution exists for s ∈ [−e−1, ∞) and it satisfiesW (−e−1) = −1,W (0) = 0,W ′(0) = 1 andW (s) ∼ log s as s → ∞. The 5

Lambert-W arises in various specific models by providing solutions to certain differential and functional equations. Corless 6

et al. (1996) is the standard account of properties and applications of W . In addition, Brito et al. (2008), Caillol (2003) and 7

Valluri et al. (2000), amongst others, describe a variety of applications. The standard reference Olver et al. (2010) classifies 8

W (s) as ‘elementary’ and it lists some of its properties. 9

Themost interesting property ofW (s) for probability theory is that it is a Bernstein function, writtenW ∈ B, andmeaning 10

that it has the integral representation 11

W (s) =

∫
∞

0

(
1 − e−sv)Ω(dv), (1.2) 12

whereΩ is a Lévymeasure, i.e.,Ω({0}) = 0 and
∫

∞

0 (v∧1)Ω(dv) < ∞. It follows that there is a subordinator, i.e., a positive- 13

valued Lévy process (Λt : t ≥ 0) which necessarily has increasing sample paths with Λ0 = 0, and whose one-dimensional 14
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laws satisfy1

E
(
e−sΛt

)
= e−tW (s)

=

(
W (s)
s

)t

.2

There are several published proofs of (1.2). Two of them depend ultimately on complex variable methods and they yield3

deeper results than the real-variable proofs. Kalugin et al. (2012) show thatW (s)/s has a Stieltjes transform representation,4

implying that W (s) is a complete Bernstein function, written W ∈ CB, and meaning that the Lévy measure Ω has a5

completely monotone density, denoted here by ω(y). Pakes (2011) independently shows thatW ′(s) has a Stieltjes transform6

representation and hence thatW (s) is Thorin Bernstein, writtenW ∈ T B, and meaning that yω(y) is completely monotone.7

Clearly T B ⊂ CB and the inclusion is strict. See Schilling et al. (2012) for much more about these Bernstein function classes.8

The property W ∈ T B has the significant consequence that the probability laws L(Λt ) are self-decomposable (S.D.) for9

each t > 0, an aspect explored by Pakes (2011). We remark that this S.D. property in fact is an immediate consequence of10

the differentiation identity11

W ′(s) =
W (s)

s(1 + W (s))
(1.3)12

and knowing that W ∈ B. We show this in Section 4.13

It is expedient at this point to summarise in the following proposition the results in Pakes (2011) which are relevant to14

this study.15

Proposition 1.1. (i) There is a probability measure ν satisfying supp(ν) = [e−1, ∞) and16

W ′(s) =

∫
∞

e−1

ν(dy)
y + s

. (1.4)17

Hence ν is the Thorin measure of W, i.e.,18

W (s) =

∫
∞

e−1
log(1 + s/y)ν(dy) (1.5)19

yielding the Bernstein representation20

W (s) =

∫
∞

0

(
1 − e−sv)ω(v)dv, (1.6)21

where22

ω(v) = v−1
∫

∞

e−1
e−vyν(dy). (1.7)23

(ii) Define Λ = Λ1 and let ε, U and Z be independent random variables having, respectively, the standard exponential and24

uniform laws and, for z ≥ 0,25

P(Z ≤ z) = 1
(
z ≥ e−1) ∫ z

0
y−1ν(dy).26

Then27

Λ
d
= εU/Z . (1.8)28

In addition,29

E(Z−n) =
(n + 1)n

n!
, P(Λ > z) = o

(
z−

1
2 e−z/e

)
, (z → ∞). (1.9)30

(iii) The S.D. law L(Λ) has the background driving Lévy process (BDLP) representation31

Λ =

∫
∞

0
e−tdCt ,32

where (Ct : t ≥ 0) is a compound Poisson process with unit jump rate and jump increments having the density function yω(y).33

Finally,34

W ′(s) = E
(

Z
Z + s

)
. (1.10)35

Part (i) comprises the essence of Theorem 3.1 in Pakes (2011), in particular, equations (3.7), (3.8), (3.1) and (3.10) there.36

Part (ii) is covered by Theorem (3.4) and its proof and Part (iii) is Theorem 3.3, both in Pakes (2011).37

In this paper we refine many of the properties listed in Proposition 1.1 by using the integral evaluation38 ∫ π

0
(φ(x))rdx =

πr r

Γ (1 + r)
, (r ≥ 0) (1.11)39
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