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a b s t r a c t

Consider a random sample of n independently and identically distributed p-dimensional
normal random vectors. A test statistic for complete independence of high-dimensional
normal distributions, proposed by Schott (2005), is defined as the sum of squared Pearson’s
correlation coefficients. A modified test statistic has been proposed by Mao (2014). Under
the assumption of complete independence, both test statistics are asymptotically normal
if the limit limn→∞p/n exists and is finite. In this paper, we investigate the limiting
distributions for both Schott’s and Mao’s test statistics. We show that both test statistics,
after suitably normalized, converge in distribution to the standard normal as long as both
n and p tend to infinity. Furthermore, we show that the distribution functions of the
test statistics can be approximated very well by a chi-square distribution function with
p(p − 1)/2 degrees of freedom as n tends to infinity regardless of how p changes with n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In classical multivariate analysis, statistical methods have been developed mainly for data from designed experiments
and dimensions of the data are fixed or very small comparedwith the sample size. Nowadays, new technology has generated
various types of high-dimensional datasets such as financial data, consumer data, modern manufacturing data, multimedia
data, hyperspectral image data, internet data, microarray and DNA data. A common feature for all these datasets is that
their dimensions can be very large compared with their sample sizes. See, e.g., Schott (2001, 2005, 2007), Ledoit and Wolf
(2002), Fan et al. (2005), Bai et al. (2009), Chen et al. (2010), Chen and Qin (2010), Fujikoshi et al. (2010), Bühlmann and
van de Geer (2011), Jiang et al. (2012), Srivastava and Reid (2012).

Throughout the paper, Np(µ,Σ) denotes the p-dimensional normal distribution with mean vector µ and covariance
matrix Σ, and Ip denotes the p × p identity matrix. We assume that Σ is positive definite. Write Σ = (σ (i, j))1≤i,j≤p. Then,
Γ = (ρij)1≤i,j≤p is the correlation matrix of Σ given by ρij = σ (i, j)/

√
σ (i, i)σ (j, j).

Assume that a p-dimensional random vector x = (x1, . . . , xp)′ has a distribution Np(µ,Σ). We are interested in testing
whether the p components x1, x2, . . . , xp are independent or equivalently testing whether the covariance matrix Σ is
diagonal. Then, the test can be written as

H0 : Γ = Ip vs Ha : Γ ̸= Ip. (1.1)

In literature, (1.1) is known as the test of complete independence.
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Let x1, . . . , xn be i.i.d. from Np(µ,Σ). Write

xk = (xk1, . . . , xkp)′, k = 1, . . . , n.

Define

rij =

∑n
k=1(xki − x̄i)(xkj − x̄j)√∑n

k=1(xki − x̄i)2 ·
∑n

k=1(xkj − x̄j)2
, (1.2)

where x̄i =
1
n

∑n
k=1xki and x̄j =

1
n

∑n
k=1xkj. Then, Rn := (rij)p×p is the sample correlation matrix based on the p-dimensional

random vectors x1, . . . , xn.
In classic multivariate analysis when p is a fixed integer, the likelihood method is a nice approach to test (1.1). From

Bartlett (1954) or Morrison (2005), the likelihood ratio test statistic is a function of the determinant of Rn. When p = pn
depends on n and pn → ∞, the limiting distribution of the likelihood ratio test statistic has been obtained in Jiang and Yang
(2013), Jiang et al. (2013) and Jiang and Qi (2015), and the likelihood ratio method can still be used to test (1.1). However,
the likelihood ratio method fails when p ≥ n, since the sample correlation matrix Rn is singular and the corresponding test
statistic is degenerate. A natural requirement for non-singularity of Rn is p < n.

Schott (2005) considers the following test statistic

tnp =

∑
1≤j<i≤p

r2ij .

Assume that the null hypothesis of (1.1) holds and limn→∞p/n = γ ∈ (0, ∞). Schott (2005) proves that tnp− p(p−1)
2(n−1) converges

in distribution to a normal distribution with mean 0 and variance γ 2, that is,

t∗np :=
tnp −

p(p−1)
2(n−1)

τnp

d
→ N(0, 1), (1.3)

where τ 2
np =

p(p−1)(n−2)
(n−1)2(n+1)

.
It is worth noting that the same test statistic tnp is also proposed by Srivastava (2005). Srivastava (2005, 2006) also

considers a test statistic which is based on Fisher’s z-transformation and originally proposed by Chen andMudholkar (1990):

Qnp =
(n − 3)

∑
1≤j<i≤p z

2
ij −

1
2p(p − 1)

√
p(p − 1)

,

where zij =
1
2 log 1+rij

1−rij
. From Srivastava (2005), such a test has not been designed for large p. Instead, Srivastava (2005)

proposes a test statistic T3 which is related to the sample covariances only. See Srivastava (2005, 2006) for details.
Under certain conditions, Srivastava (2005) shows that T3 converges in distribution to the standard normal under the null
hypothesis in (1.1). A simulation study in Srivastava (2006) indicates that Qnp statistic is inferior as the test does not give a
consistent nominal level when n and p are close.

Very recently, Mao (2014) proposes a new test for complete independence. The new test statistic is closely related to
Schott’s test and is defined by

Tnp =

∑
1≤j<i≤p

r2ij
1 − r2ij

.

It has been proved in Mao (2014) that Tnp is asymptotically normal under the null hypothesis of (1.1) and assumption that
limn→∞p/n = γ ∈ (0, ∞).

In this paper, we will remove the condition imposed on p and assume only that p = pn → ∞ as n → ∞. We will show
that both Tnp and tnp are asymptotically normal. We also establish a unified chi-square approximation for the distributions
of Tnp and tnp regardless of how p changes with n.

The rest of the paper is organized as follows. The main results of the paper are given in Section 2 and their proofs are
postponed until Section 4. A simulation study to compare the performance of several different approaches is reported in
Section 3.

2. Main results

Our main results include three theorems. We first obtain the limiting distribution of the test statistic Tnp in a larger range
for p, and then establish a unified chi-square approximation for all p ≥ 2. The corresponding limiting distributions of tnp are
given in the third theorem.

The first theorem states that Mao’s (2014) test statistic Tnp is asymptotically normal as long as p = pn → ∞ as n → ∞.
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