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a b s t r a c t

We introduce tests for equivalence to families of multinomial distributions. The finite
sample performance of the tests is improved by bootstrapping. We apply the tests to the
independence model of two-way contingency tables and study finite sample performance
by simulation. We apply tests to real data sets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Equivalence testing has received an increasing attention in applied statistics over the last decade. A comprehensive
overview of equivalence testing can be found inWellek (2010). The equivalence testing has also a general value in a broader
context to test the agreement between theory and observations. Two probability distributions P and Q are considered
equivalent with respect to distance d if d (P,Q ) < ε for some sufficiently small positive ε, such that the distances smaller
than ε are of little practical significance.

There are few tests for equivalence to a fully specified multinomial distribution, see Wellek (2010), Frey (2009) and
Ostrovski (2017). We consider a more general case of showing equivalence to a family of multinomial distributions. This
testing problem arises in many applications if some specific model for the data generating process is assumed. The testing
for approximate collapsibility of two-way contingency tables is a common example where the equivalence testing can be
applied. Multinomial distributions with k categories correspond to the probability vectors from the simplex Sk ⊂ Rk. Let
p ∈ Sk denote a probability vector, where pi is the probability of ith category. Let M ⊂ Sk be a family of multinomial
distributions. The distance between p and M is defined by

d (p,M) = inf
q∈M

d(p, q), (1)

where the infimumbecomes aminimum ifM is compact. The distance dmin can be calculated numerically using conventional
optimization techniques. The generalized equivalence test problem is given by

H0 = {d (p,M) ≥ ε} against H1 = {d (p,M) < ε} , (2)

where ε > 0 is a tolerance parameter and p ranges over the simplex Sk.
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To our best knowledge no published work investigates equivalence testing of (2). However there are few articles on the
goodness-of-fit tests with a tolerance region. Hodges and Lehmann (1954) consider theweighted Euclidean distance to build
a tolerance zone around the null hypothesis in a number of testing problems. Then they apply the usual chi-square test for
composite hypothesis. Rudas et al. (1994) present a framework based on distribution mixtures for evaluating goodness-of-
fit of contingency tables. This approach is extended to the Kullback–Leibler distance in Liu and Lindsay (2009), where the
multinomial likelihood ratio test for composite hypothesis is applied. Unfortunately the chi-square tests aswell as likelihood
ratio tests are not suitable for the equivalence test problem (2) because the asymptotic distributions of the test statistics
have a singular point at zero with probability 0.5, see Hodges and Lehmann (1954) for the chi-square statistic and Rudas et
al. (1994) for the likelihood ratio statistic.

We take a different approach using a normalized estimator of the distance d (p,M) as the tests statistic. We observe the
vector pn = (pn1, . . . , pnk) of relative frequencies from n independent realizations of a random variable which is distributed
according to p. The vector pn can be used as a plug-in estimator of the probability vector p. Thus we put pn in expression (1)
and obtain the test statistic Tn =

√
n (d (pn,M) − ε) for the generalized test problem (2). An equivalence test rejectsH0 if Tn

is smaller than a critical value, which can be calculated asymptotically or by means of the parametric bootstrap. In the next
section we derive the asymptotic distribution of Tn and show the local asymptotic optimality (LAN) of the proposed tests.

2. Asymptotic distribution and local asymptotic optimality

First we show that the function p ↦→ d (p,M) is differentiable under mild regularity conditions.

Theorem 1. Let p0 be a fixed probability vector. Assume that there exists a continuous function qmin : Rk
→ M on an

open neighborhood U of p0 with d (p,M) = d (p, qmin (p)). Let d be continuously differentiable on an open neighborhood of
(p0, qmin (p0)). Let d̊(p, q) denote the partial derivative ∂

∂pd (p, q). Then the function p ↦→ d (p,M) is differentiable at p0 with
the derivative d̊ (p0, qmin (p0)).

The proof of Theorem 1 is given in the supplementary material. The derivative of d (p,M) can be computed in two steps:
1. Calculate the value of qmin (p) ∈ M numerically.
2. Evaluate the known partial derivative function d̊ (p0, qmin (p0)).

Remark 2. Euclidean distance is everywhere differentiable and therefore meets the requirements of Theorem 1. The total
variation distance is not differentiable at some points because the absolute value is not differentiable at zero. However, there
is a smooth version of the total variation distance, which is everywhere differentiable, see Ostrovski (2017) for details. Thus
the smooth version of the total variation distance fulfills the requirements of Theorem 1.

Remark 3. The existence of a continuous minimizer qmin (p) on an open neighborhood of p0 is a basic requirement for the
numerical calculation of d (p,M). However the existence of a global continuous minimizer is usually very difficult to show.
Therefore, in the most practical cases we assume the existence of a continuous minimizer on an open neighborhood of the
true distribution density. The assumption can be validated numerically using different starting points for the optimization.

It is a well-known fact (see Bishop et al. (1975), Theorem 14.3-4) that the normalized vector
√
n (pn − p) of relative

frequencies converges weakly to a random variable Z , which is Gaussian with mean zero and covariance matrix Σ (p) =

Dp − ppt , where Dp is the square diagonal matrix, whose diagonal entries are p1, . . . , pk.

Corollary 4. Let p0 be a boundary point of H0. Under the assumptions of Theorem 1 the asymptotic distribution of the test
statistic Tn under p0 is Gaussian with mean zero and variance σ (p0) = d̊ (p0) Σ (p0) d̊(p0)t , where d̊ (p0) is a shorthand notation
for d̊ (p0, qmin (p0)).

Proof. The assertion follows from Theorem 1 by application of the delta method, see van der Vaart (1998), p. 26,
Theorem 3.1. □

Let lα denote the lower α-quantile of the normal distribution and let p0 be a boundary point of H0. The equivalence tests
based on Tn are asymptotically optimal as the following assertion states.

Corollary 5. Let the assumptions of Theorem 1 hold. Let cn be a critical value such that cn → lα in probability. Let σn be
a consistent estimator of σ (p0) such that σn → σ (p0) in probability. Then the test that rejects H0 if Tn ≤ cnσn is locally
asymptotically most powerful.

Proof. It follows from Theorem 1 and Ostrovski (2017), Proposition 3. □

The last component of the asymptotic equivalence test is an estimator of σ (p0), which is given in the next proposition.

Proposition 6. Under the assumptions of Theorem 1 the estimator σ (pn) converges to σ (p0) a.s.
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