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a b s t r a c t

An iterative algorithm has been conjectured to converge to the nonparametric MLE of the
mixing distribution. We give a rigorous proof of this conjecture and discuss the use of this
algorithm for producing smooth mixing densities as near-MLEs.
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1. Introduction1

Consider a mixture model with density function f = fP given by2

f (y) =

∫
k(y | x) P(dx) (1)3

where k(y | x) is a known kernel density and P is an unknown mixing distribution. The goal is estimation of P based4

on independent and identically distributed data Y1, . . . , Yn from the mixture f in (1), a classically challenging problem in5

statistics. If P is a discrete distribution with fixed and finite number of components, then (1) is a finite mixture model and6

is relatively straightforward; indeed, maximum likelihood computation is feasible with the EM algorithm (Dempster et al.,7

1977) and the usual asymptotic theory is available (Redner and Walker, 1984). The catch is that the number of mixture8

components can be difficult to specify. Therefore, there has also been a lot of work on finite mixtures with an unknown9

number of components (e.g., Woo and Sriram, 2006; Miller and Harrison, 2017).10

Likelihood-basedmethods for estimating P are available even without explicitly making the problem finite-dimensional.11

Indeed, the likelihood function for P in the nonparametric case is12

L(P) =

n∏
i=1

∫
k(Yi | x) P(dx), (2)13
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and it is known that the maximizer P̂ , the nonparametric maximum likelihood estimator (MLE), is discrete, with at most n 1

components (Lindsay, 1983, 1995). Discreteness simplifies computation, and fast algorithms are available, e.g., Wang (2007) 2

and Koenker andMizera (2014). However, if P is believed to have a density with respect to, say, the Lebesguemeasure, then 3

the discrete estimator may not be satisfactory. For example, in the image reconstruction of positron emission tomography 4

(Vardi et al., 1985), the nonparametric MLE often provides unsatisfactory reconstructions. Various smoothed versions of P̂ 5

have been proposed (e.g., Zhang, 1990; Green, 1990; Silverman et al., 1990; Eggermont and LaRiccia, 1995, 1997; Goutis, 6

1997; Andersen and Hansen, 2001; Liu et al., 2009; Belomestny and Schoenmakers, 2014; Comte and Genon-Catalot, 2015; 7

Rebafka and Roueff, 2015), but some of these are rather complicated and there seems to be no general consensus that one 8

smoothing method is any better than another. 9

For Bayesian mixture models, the Dirichlet process prior (Ferguson, 1973) and variants of its stick-breaking representa- 10

tion (Sethuraman, 1994) have become a mainstay, largely because of the plethora of powerful Markov chain Monte Carlo 11

methods available for evaluating the corresponding posterior (e.g., Escobar andWest, 1995;Walker, 2007). The focus of these 12

developments, however, has been the mixture density, with the mixing distribution serving merely as a modeling tool; but 13

see Nguyen (2013). As with the nonparametric MLE, the inherent discreteness of stick-breaking priors, while advantageous 14

for mixture density estimation and modeling latent structures, is problematic in the context of nonparametric Bayesian 15

estimation of a mixing density. 16

A Bayesian-style recursive estimate for P , called predictive recursion, was proposed by Newton (2002) and studied 17

theoretically by Martin and Ghosh (2008), Martin and Tokdar (2009), and Tokdar et al. (2009). The algorithm is fast and 18

provides an estimator having a smooth density with respect to any specified dominating measure. However, its dependence 19

on the (arbitrary) order in which the data Y1, . . . , Yn is processed, which makes it non-Bayesian, along with its inability to 20

be characterized as an optimizer of any objective function, makes the predictive recursion estimator difficult to interpret. 21

In this paper, we investigate properties of a simple and fast iterative algorithm, one that shares certain features with the 22

MLE, a Bayesian approach, as well as predictive recursion. Versions of this algorithm have been presented in the literature 23

before, and its convergence properties have been conjectured but not rigorously proved. Here we fill this gap by providing 24

a proof that the algorithm converges to the nonparametric MLE as the number of iterations approaches infinity. While the 25

limit is a discrete distribution, it is interesting that at every finite number of iterations, the algorithm returns a continuous 26

density. This suggests that a smooth near-MLE of the density can be obtained by stopping the algorithm before convergence 27

is achieved. In the online supplement, we propose a data-driven stopping rule and demonstrate empirically the quality 28

performance of this nonparametric near-MLE of the mixing density compared to predictive recursion. 29

2. A simple and fast algorithm 30

2.1. Definition 31

Let p be a density of the mixing distribution P in (1) with respect to Lebesgue measure. Given a prior guess p0 of p, if a 32

data point Yi is observed, then the Bayesian update of p0 to p1,i, say, is 33

p1,i(x) =
k(Yi | x)p0(x)

f0(Yi)
, (3) 34

where f0(y) =
∫
k(y | x)p0(x) dx. However, we can carry out this single-observation update for any i = 1, . . . , n and, since 35

observations ordering is irrelevant, it is reasonable to take an average: 36

p1(x) =
1
n

n∑
i=1

p1,i(x) =
1
n

n∑
i=1

k(Yi | x)p0(x)
f0(Yi)

. 37

This same argument can be applied, with p0 replaced by p1, to get an updated estimate p2, and so on. This suggests the 38

following iterative algorithm for an estimator of p: 39

pt+1(x) =
1
n

n∑
i=1

k(Yi | x)pt (x)
ft (Yi)

, t ≥ 0, (4) 40

where ft (y) =
∫
k(y | x)pt (x) dx for general t ≥ 0. Algorithms similar to (4) for certain applications or models have appeared 41

in the literature; see, e.g., Vardi et al. (1985), Laird and Louis (1991), and Vardi and Lee (1993). But despite the hints in 42

these papers about more general versions, it seems that the algorithm (4) has not been studied thoroughly and in the level 43

of generality considered here. 44

Aside from this Bayesian-motivated formulation, there are a number ofways to think about this algorithmandunderstand 45

what it is trying to do. First, note the similarities with the predictive recursion algorithm of Newton (2002) which updates 46

by taking a weighted average of the current guess and the single-observation Bayes update (3) based on the current guess as 47

the prior. These computations proceed along the sequence i = 1, . . . , n and, therefore, the result depends on the arbitrary 48

order of the data sequence. The algorithm (4) can, therefore, be viewed as an order-invariant version of predictive recursion 49

that can be refined ad infinitum, by taking t → ∞. 50
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