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a b s t r a c t

OLS and SIR are two popular sufficient dimension reduction estimators. OLS can recover at
most one direction, and SIR shares this limitation when the response is binary. To address
such limitation, we propose slicing-assisted OLS and slicing-assisted SIR.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As a popular tool for multivariate analysis, sufficient dimension reduction (SDR) (Li, 1991; Cook, 1998) aims to reduce
the predictor dimension and to contain the relevant regression information between the response and the predictor. For
univariate response Y ∈ R and multivariate predictor X ∈ Rp, one goal of SDR is to find B ∈ Rp×d with d < p, such that

Y X | BTX, (1)

where ‘‘ ’’ means statistical independency. IfB satisfies (1), then the column space ofB is called a dimension reduction space.
Under mild assumptions (Yin et al., 2008), the intersection of all dimension reduction spaces is itself a dimension reduction
space, and is known as the central space. We denote the central space by SY |X. When the focus is on the regression mean,
we consider

Y E(Y |X) | BTX. (2)

If B satisfies (2), then the column space of B is called a mean dimension reduction space. The intersection of all mean
dimension reduction spaces is called the central mean space (Cook and Li, 2002), and is denoted by SE(Y |X). Let B ∈ Rp×d

be the basis of SE(Y |X) (or SY |X), and d is known as the structural dimension of the central mean space (or the central space).
Ordinary least squares (OLS) (Li and Duan, 1989) is a classical SDR estimator for the central mean space. An obvious

limitation of OLS is that it can estimate at most one direction in the central mean space. In this short note, we propose
slicing-assisted OLS (SOLS) to address this limitation. Our key idea is to slice the support of βT

0X, where β0 denotes the
original OLS estimator. SOLS improves the original OLS as it can recover more than one direction in the central mean space.
Sliced inverse regression (SIR) (Li, 1991), on the other hand, is a popular SDR method for the central space. In the case of
binary response, it is well-known that SIR can only recover at most one direction in the central space. Following similar
development as the SOLS, we propose slicing-assisted SIR (SSIR), which can recover multiple directions in the central space
with binary response.
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The rest of the paper is organized as follows. Section 2 introduces the slicing-assisted OLS. Section 3 studies the slicing-
assisted SIRwith binary response. Simulation studies are presented in Section 4. All the proofs are relegated to the Appendix.
We assume the structural dimension d is known throughout the paper.

2. Slicing-assisted OLS

Denote E(X) = µ and Var(X) = Σ. The classical OLS estimator isβ0 = Σ−1E{(X−µ)Y }. Suppose Span(B) = SE(Y |X), where
Span(·) denotes the column space. The following assumption is common in the sufficient dimension reduction literature:

E(X|BTX) is a linear function of BTX. (3)

Assumption (3) is referred to as the linear conditional mean (LCM) assumption. Under LCM, it can be shown that β0 ∈ SE(Y |X),
whichmeans OLS can be used to recover the central mean space. OLS can recover at most one dimension in the central mean
space, and this motivates us to propose slicing-assisted OLS. Our proposal is based on the following key observation.

Theorem 2.1. Assume (3) holds for B, where Span(B) = SE(Y |X). Then Σ−1E{(X − µ)Y |β0
TX} ∈ SE(Y |X).

Recall that the original OLS estimator is β0 = Σ−1E{(X − µ)Y }. Our proposal is to replace the unconditional expectation
in OLS with the conditional expectation on βT

0X.
Let J1, . . . , JH be a partition for the support of βT

0X. For h = 1, . . . ,H , denote I(βT
0X ∈ Jh) as the indicator function of βT

0X
belonging to Jh. Let πh = E{I(βT

0X ∈ Jh)}, Uh = E{(X − µ)YI(βT
0X ∈ Jh)}, and define

Msols = Σ−1

(
H∑

h=1

π−1
h UhUT

h

)
Σ−1. (4)

The next result follows directly from Theorem 2.1.

Corollary 2.1. Assume (3) holds for B, where Span(B) = SE(Y |X). Then Span(Msols) ⊆ SE(Y |X).

Corollary 2.1 suggests that the sample version of Msols in (4) can be used to recover multiple directions in the central
mean space. Let {(Xi, Yi), i = 1, . . . , n} be an i.i.d. sample of (X, Y ). We conclude this section with the sample level SOLS
algorithm.

1. Let X̄ = n−1∑n
i=1Xi, X̂i = Xi − X̄, Σ̂ = n−1∑n

i=1X̂iX̂T
i , En(XY ) = n−1∑n

i=1X̂iYi, and β̂0 = Σ̂−1En(XY ).
2. Calculate M̂sols = Σ̂−1

(∑H
h=1π̂

−1
h ÛhÛT

h

)
Σ̂−1, where for h = 1, . . . ,H , π̂h = n−1∑n

i=1I(β̂
T
0X̂i ∈ Jh) and Ûh =

n−1∑n
i=1X̂iYiI(β̂

T
0X̂i ∈ Jh).

3. Perform eigenvalue decomposition of M̂sols. Let β̂
sols
1 , . . . , β̂

sols
d be the eigenvectors corresponding to the d largest

eigenvalues of M̂sols. The final SOLS estimator of SE(Y |X) is Span(β̂
sols
1 , . . . , β̂

sols
d ).

3. Slicing-assisted SIR with binary response

We discuss estimators of the central space in this section. Suppose the LCM assumption (3) holds for B, where Span(B) =

SY |X. The classical SIR is based on the fact that Σ−1E(X − µ|Y ) ∈ SY |X.
In the case of binary response, denote the two categories as Y = 0 or Y = 1. Let ξ0 = Σ−1E(X − µ|Y = 0) and

ξ1 = Σ−1E(X − µ|Y = 1). Note that p0ξ0 + p1ξ1 = 0, where p0 = Pr(Y = 0) and p1 = Pr(Y = 1). Thus SIR recovers only
one unique direction in the central space. This motivates us to propose slicing-assisted SIR. The following result is parallel
to Theorem 2.1.

Theorem 3.1. Assume (3) holds for B, where Span(B) = SY |X. Then Σ−1E(X − µ|Y , ξ0
TX) ∈ SY |X.

Recall that the original SIR estimator isΣ−1E(X − µ|Y ). Our proposal is to replace the conditional expectation on Y with
the conditional expectation on both Y and ξT0X. Unlike SIR that only requires slicing the support of Y , the new estimator
requires double slicing through both the support of Y and the support of ξT0X.

Let K1, . . . , KH be a partition for the support of ξT0X. For ℓ = 1, 2 and h = 1, . . . ,H , denote Iℓ,h = I(Y = ℓ, ξT0X ∈ Kh) as
the indicator function of ξT0X belonging to Kh and Y = ℓ. Let τℓ,h = E(Iℓ,h), Vℓ,h = E{(X − µ)Iℓ,h}, and define

Mssir = Σ−1

(
1∑

ℓ=0

H∑
h=1

τ−1
ℓ,hVℓ,hVT

ℓ,h

)
Σ−1. (5)

The next result follows from Theorem 3.1.
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