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a b s t r a c t

In the present paper we propose recursive general kernel-type estimators for spatial data
defined by the stochastic approximation algorithm. We obtain the central limit theorem
and strong pointwise convergence rate for the nonparametric recursive general kernel-
type estimators under some mild conditions. Finally, we investigate the MISE of the
proposed estimators and provide the optimal bandwidth.
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1. Introduction 1

Over years ago, Parzen (1962) studied some properties of kernel density estimators introduced by Akaike (1954) 2

and Rosenblatt (1956). Nonparametric density and regression function estimation has been the subject of intense inves- 3

tigation by both statisticians and probabilists for many years and this has led to the development of a large variety of 4

methods. Kernel nonparametric function estimation methods have long attracted a great deal of attention, for good sources 5

of references to research literature in this area along with statistical applications consult Tapia and Thompson (1978), Wertz 6

(1978), Devroye and Györfi (1985), Devroye (1987), Silverman (1986), Nadaraya (1989), Härdle (1990), Scott (1992), Wand 7

and Jones (1995), Eggermont and LaRiccia (2001) and Devroye and Lugosi (2001) and the references therein. There are 8

basically no restrictions on the choice of the kernel K (·) in our setup, apart from satisfying classical conditions. The selection 9

of the bandwidth, however, is more problematic. The choice of the bandwidth is crucial to obtain a good rate of consistency 10

for of the kernel-type estimators. It has a big influence on the size of the bias. One has to find an appropriate bandwidth 11

that produces an estimator which has a good balance between the bias and the variance of the kernel-type estimator, for 12

more discussion refer to Mason (2012). It is worth noticing that the bandwidth selection methods studied in the literature 13

can be divided into three broad classes: the cross-validation techniques, the plug-in ideas and the bootstrap. Recently, 14

some general methods based upon empirical process techniques are developed in order to prove uniform in bandwidth 15

consistency of a class of kernel-type function estimators (density, regression, entropy and copula), we may refer to Einmahl 16

and Mason (2000, 2005), Bouzebda and Elhattab (2009, 2011), Bouzebda (2012) and Bouzebda et al. (2018). Further, plug-in 17

bandwidth selectionmethod for recursive kernel density estimators defined by stochastic approximationmethod have been 18

done by Slaoui (2014a) and for recursive kernel distribution estimators have been done by Slaoui (2014b). 19

This work concerns a nonparametric estimation of the recursive general kernel-type estimators for spatial data defined 20

by the stochastic approximation algorithm. To the best of our knowledge, the results presented here, respond to a problem 21

that has not been studied systematically up to the present, which was the basic motivation of the paper. 22
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We start by giving some notation and definitions that are needed for the forthcoming sections. We consider a spatial1

process (Zi = (Xi, Yi) ∈ Rd
× R : i ∈ ZN ) defined over some probability space (Ω,F,P) with same distribution as (X, Y )2

having unknown density gX,Y (·) on Rd+1. The density function of X on Rd is gX(·). In this paper, we are interested in the3

following regression model4

Yi = r(Xi) + εi,5

where r(x) = E(Y |X = x) whenever it exists, is an unknown function, with real values. The process is observed over the6

spatial set of sites In = {i = (i1, . . . , iN ), 1 ≤ ik ≤ nk, k = 1, . . . ,N}, which is a finite subset of a potentially observable7

region S ⊂ RN . We denote by (s1, . . . , sn) the localized sites in S and we denote n = (n1, . . . , nN ); let n̂ := n1 × · · · × nN8

be the sample size. From now on, we assume for simplicity that n1 = n2 = · · · = nN = n. We let Πj =
∏

i∈Ij
(1 − γi) , for9

j ∈ {1, . . . ,n} and we will study the following process10

Ψ̂n,hn (x, f , K ) = Πn
∑
i∈In

Π−1
i γih−d

i
{
(cf (x)f (Yi) + df (x))K (h−1

i (x − Xi))
}
, (1.1)11

where (γn) is a nonrandom positive sequence tending to zero as n̂ → ∞, (hn) is a nonrandom positive sequence tending to12

zero as n̂ → ∞, called bandwidth. For convenience,we treat the observations sites as an array that is In =
{
sj, j = 1, . . . , n

}
.13

By enumerating the sites, we let Πj =
∏j

i=1

(
1 − γsi

)
, for j ∈ {1, . . . , n}, one may rewrite Ψ̂n,hn (x, f , K ) as14

Ψ̂n,hn (x, f , K ) = Πn

n∑
j=1

Π−1
j γsjh

−d
sj

{
(cf (x)f (Ysj ) + df (x))K

(
h−1
sj

(
x − Xsj

))}
. (1.2)15

Noting that, the proposed estimators can be written recursively as follows:16

Ψ̂n,hn (x, f , K ) =
(
1 − γsn

)
Ψ̂n−1,hn−1 (x, f , K )17

+ γsnh
−d
sn

{
(cf (x)f (Ysn ) + df (x))K

(
h−1
sn

(
x − Xsn

))}
. (1.3)18

This recursive property is particularly useful when the number of the spatial sites increases on space since Ψ̂n,hn (x, f , K )19

can be easily updated with each additional observation. In fact, if Xsn is a new observation of the process at a site sn added20

to In−1, the estimators Ψ̂n,hn (x, f , K ) can be updated recursively by the relation (1.3). From a practical point of view, this21

arrangement provides important savings in computational time and storagememory which is a consequence of the fact that22

the estimate updating is independent of the history of the data. The main drawback of the classical kernel estimator is the23

use of all data at each step of estimation. From a theoretical point of view, the main advantage of the investigation of such24

processes is that we can prove almost sure consistency with exact rate for several kernel-type estimators simultaneously. It25

is worth noting that the quantity Ψ̂n,hn (x, f , K ) includes as particular cases: the kernel type density estimator, the Nadaraya26

Watson estimator and the kernel type estimator of the conditional distribution, we may refer to Einmahl and Mason (2000,27

2005) for more details. In this sense, the present paper extends, in non trivial way, some previous results by considering28

general kernel-type estimators given in (1.2).29

The remainder of this paper is organized as follows. In Section 2 we give the assumption and the main results. More30

precisely, we provide the bias and the asymptotic variance. We establish the asymptotic normality of Ψ̂n,hn (x, f , K ) in31

Theorem 1. Finally we obtain the consistency with exact rate in Theorem 2. We calculate the MISE and provide the optimal32

bandwidth. Some concluding remarks and possible future developments are mentioned in Section 3. To avoid interrupting33

the flow of the presentation, all mathematical developments are relegated to Section 4.34

2. Assumptions and main results35

We define the following class of regularly varying sequences.36

Definition 1. Let γ ∈ R and
(
vsn

)
n≥1 be a nonrandom positive sequence. We say that

(
vsn

)
∈ GS (γ ) if37

lim
n→+∞

n
[
1 −

vsn−1

vsn

]
= γ . (2.1)38

Condition (2.1) was introduced by Galambos and Seneta (1973) to define regularly varying sequences (see also Bojanic39

and Seneta (1973)). Note that the acronym GS stands for (Galambos and Seneta). Typical sequences in GS (γ ) are, for b ∈ R,40

nγ (log n)b, nγ (log log n)b, and so on.41

In this section, we investigate asymptotic properties of the proposed estimators (1.2). The assumptions to which we shall42

refer are the following:43

(A1) K : Rd
→ R is a continuous, bounded function satisfying

∫
Rd K (z) dz = 1, and, for all j ∈ {1, . . . , d},

∫
Rd zjK (z) dz = 044

and
∫
Rd z2j ∥K (z)∥ dz < ∞.45
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