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a b s t r a c t

We consider the process Λ̂n−Λn, whereΛn is a cadlag step estimator for the primitiveΛ of
a nonincreasing function λ on [0, 1], and Λ̂n is the least concavemajorant ofΛn. We extend
the results in Kulikov and Lopuhaä (2006, 2008) to the general setting considered in Durot
(2007). Under this setting we prove that a suitably scaled version of Λ̂n − Λn converges in
distribution to the corresponding process for two-sided Brownian motion with parabolic
drift and we establish a central limit theorem for the Lp-distance between Λ̂n and Λn.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Grenander-type estimators arewell knownmethods for estimation ofmonotone curves. In case of estimating nonincreas-
ing curves, they are constructed by starting with a naive estimator for the primitive of the curve of interest and then take
the left-derivative of the least concave majorant (LCM) of the naive estimator. The first example can be found in Grenander
(1956) in the context of estimating a nonincreasing density f on [0, ∞) on the basis of an i.i.d. sample from f . The empirical
distribution function Fn of the sample is taken as a naive estimator for the cumulative distribution function corresponding to f
and theGrenander estimator is found by taking the left-derivative f̂n of the least concavemajorant F̂n. Similar estimators have
been developed in other statistical models, e.g., regression (see Brunk, 1958), random censoring (see Huang and Wellner,
1995), or the Cox model (see Lopuhaä and Nane, 2013). Durot (2007) considers Grenander-type estimators in a general
setup that incorporates several statistical models. A large part of the literature is devoted to investigating properties of
Grenander-type estimators formonotone curves, and somewhat less attention is paid to properties of the difference between
the corresponding naive estimator for the primitive of the curve and its LCM.

Kiefer and Wolfowitz (1976) show that supt |̂Fn − Fn| = Op((n−1 log n)2/3). Although the first motivation for this type
of result has been asymptotic optimality of shape constrained estimators, it has several important statistical applications.
The Kiefer–Wolfowitz result was a key argument in Sen et al. (2010) to prove that the m out of n bootstrap from F̂n
works. Mammen (1991) suggested to use the result to make an asymptotic comparison between a smoothed Grenander-
type estimator and an isotonized kernel estimator in the regression context. See also Wang and Woodroofe (2007) for a
similar application of their Kiefer–Wolfowitz comparison theorem. An extension to a more general setting was established
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in Durot and Lopuhaä (2014), which has direct applications in Durot et al. (2013) to prove that a smoothed bootstrap from
a Grenander-type estimator works for k-sample tests, and in Groeneboom and Jongbloed (2013) and Lopuhaä, and Musta
(2017) to extract the pointwise limit behavior of smoothed Grenander-type estimators for a monotone hazard from that of
ordinary kernel estimators. To approximate the Lp-error of smoothed Grenander-type estimators by that of ordinary kernel
estimators, such as in Csörgö and Horváth (1988) for kernel density estimators, a Kiefer–Wolfowitz type result no longer
suffices. In that case, results on the Lp-distance, between F̂n and Fn are more appropriate, such as the ones in Durot and
Tocquet (2003) and Kulikov and Lopuhaä (2008).

In this paper, we extend the results in Durot and Tocquet (2003) and Kulikov and Lopuhaä (2008) to the general setting
of Durot (2007). Our main result is a central limit theorem for the Lp-distance between Λ̂n and Λn, where Λn is a naive
estimator for the primitive Λ of a monotone curve λ and Λ̂n is the LCM of Λn. As special cases we recover Theorem 5.2
in Durot and Tocquet (2003) and Theorem 2.1 in Kulikov and Lopuhaä (2008). Our approach requires another preliminary
result, which might be of interest in itself, i.e., a limit process for a suitably scaled difference between Λ̂n and Λn. As special
cases we recover Theorem 1 in Wang (1994), Theorem 4.1 in Durot and Tocquet (2003), and Theorem 1.1 in Kulikov and
Lopuhaä (2006).

2. Main results

We consider the general setting in Durot (2007). Let λ : [0, 1] → R be nonincreasing and assume that we have at hand
a cadlag step estimator Λn of

Λ(t) =

∫ t

0
λ(u) du, t ∈ [0, 1].

In the sequel we will make use of the following assumptions.

(A1) λ is strictly decreasing and twice continuously differentiable on [0, 1] with inft |λ′(t)| > 0.
(A2) Let Bn be either a Brownian motion or a Brownian bridge. There exists q > 6, Cq > 0, L : [0, 1] → R, and versions of

Mn = Λn − Λ and Bn such that

P
(
n1−1/q sup

t∈[0,1]

⏐⏐Mn(t) − n−1/2Bn ◦ L(t)
⏐⏐ > x

)
≤ Cqx−q

for all x ∈ (0, n]. Moreover, L is increasing and twice differentiable on [0, 1], with supt |L′′(t)| < ∞ and inft |L′(t)| > 0.

Note that this setup includes several statistical models, such as monotone density, monotone regression, and the
monotone hazard model under random censoring, see Durot, (2007) [Section 3].

We consider the distance between Λn and its least concave majorant Λ̂n = CM[0,1]Λn, where CMI maps a function
h : R → R into the least concave majorant of h on the interval I ⊂ R. Consider the process

An(t) = n2/3 (
Λ̂n(t) − Λn(t)

)
, t ∈ [0, 1], (1)

and define

Z(t) = W (t) − t2, ζ (t) = [CMRZ](t) − Z(t), (2)

whereW denotes a standard two-sided Brownianmotion originating fromzero. For each t ∈ (0, 1) fixed and t+c2(t)sn−1/3
∈

(0, 1), define

ζnt (s) = c1(t)An
(
t + c2(t)sn−1/3) , (3)

where

c1(t) =

(
|λ′(t)|
2L′(t)2

)1/3

, c2(t) =

(
4L′(t)
|λ′(t)|2

)1/3

. (4)

Our first result is the following theorem, which extends Theorem 1.1 in Kulikov and Lopuhaä (2006).

Theorem 1. Suppose that assumptions (A1)–(A2) are satisfied. Let ζnt and ζ be defined in (3) and (2). Then the process
{ζnt (s) : s ∈ R} converges in distribution to the process {ζ (s) : s ∈ R} in D(R), the space of cadlag function on R.

Note that as a particular case ζnt (0) converges weakly to ζ (0). In this way, we recover Theorem 1 in Wang (1994) and
Theorem 4.1 in Durot and Tocquet (2003). The proof of Theorem 1 follows the line of reasoning in Kulikov and Lopuhaä
(2006).

Let us briefly sketch the argument to prove Theorem 1. Note that An = D[0,1][n2/3Λn] and ζ = DR[Z], where DIh =

CMIh − h, for h : R → R. Since DI is a continuous mapping, the main idea is to apply the continuous mapping theorem to
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