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a b s t r a c t

The choice of the smoothing parameter in nonparametric function estimation is of major
concern. The estimation accuracy highly depends on how such a choice is performed. In
this paper, we construct a bandwidth selection procedure pertaining to the kernel density
estimation when a continuous time dependent and stationary process is considered.
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1. Introduction

Let (Xt , 0 ≤ t ≤ T ), T ∈ R+ be a continuous time stationary and ergodic process with a marginal density function f .
Consider the kernel estimator of f defined, for any x ∈ R, by

fT ,h(x) =
1
Th

∫ T

0
K
(
x − Xt

h

)
dt,

where h is the smoothing parameter belonging toHT := [aT , bT ]where [aT , bT ] ⊂ R+. Here,K stands as a positivemeasurable
function integrating to one. It iswell-known that large values of the bandwidth parameter oversmooth the density estimators
while small values undersmooth the curves. In this paper, we aim at investigating the optimal smoothing parameter choice
using the well-known usual cross-validation criterion.

The optimalwindowwidth choice in nonparametric estimation frameworkhasmotivated anumber of studies throughout
the literature. We refer first to the work of Stone (1984) who considered the topic in the discrete time case. He described
the window selection rule which yields to an asymptotic optimal choice under the assumption that the marginal density
is bounded whenever the cross-validation is used. Notice that this criterion has been introduced by Rudemo (1982) and
Bowman (1984). For the same needs, the regression function estimation is considered by Härdle and Marron (1985) with
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the same criterion. There exist several automatic data driven selection rules to handle the problem of the optimal smoothing
parameter choice. The so-called plug-in methods minimize both the mean integrated square error (MISE) and the mean
square error (MSE). See Silverman (1986), Heidenreich et al. (2013) andHall andMarron (1987) formore details. Chacón et al.
(2007) showed that there exists aminimizer of the exact MISE of the kernel density estimator as a function of the bandwidth
and gave the limit properties of the optimal parameter. A further work due to Chacón and Tenreiro (2012) gives properties
of the exact optimal bandwidth which minimizes the MSE of the kernel density estimator. Tenreiro (2017) presents in his
work a modified version of least square cross-validation by introducing some weights (WLSCV). Simulation results show
that the WLSCV method performs better than the standard one for both ‘‘easy-to-estimate’’ and ‘‘hard-to-estimate’’ density
cases. At this time, all the works referred to consider independent random samples.

In the discrete time dependent data case, Hart and Vieu (1990) established under a set of more restrictive conditions than
the Stone’s single one, the asymptotic optimality of the window width pertaining to the cross-validation criterion using the
ISE. Kim and Denis (1997) established the asymptotic optimal properties under nearly mild conditions as in Stone’s case.
The hazard rate function kernel estimator has been investigated by Youndjé et al. (1996). They highlighted the role of the
bandwidth in the ISE and established the optimal asymptotic properties in the window selection procedure using the cross-
validation criterion. In the functional data framework, Rachdi and Vieu (2007) considered the regression function estimate
to construct an asymptotic optimal smoothing parameter for the cross-validation criterion.

Commonly, the criterion used to measure loss is the MISE. The window hopt which minimizes the MISE is taken to be
nonrandom. Since the value of the ‘‘optimal’’ bandwidthmust in practice be a randomvariable, it ismore natural tominimize
the ISE instead of the MISE. In order to be more precise on the matter, consider the mean integrated square error and the
integrated square error associated to fT ,h defined respectively by

Mh = E
∫

[fTh(x) − f (x)]2dx

and

LT ,h =

∫
[fTh(x) − f (x)]2dx =

∫
f 2Th(x)dx − 2

∫
fTh(x)f (x)dx +

∫
f 2(x)dx.

Notice that the minimization of LT ,h with respect to h is obtained while minimizing the quantity

LT ,h −

∫
f 2(x)dx =

∫
f 2Th(x)dx − 2

∫
fTh(x)f (x)dx.

Since LT ,h −
∫
f 2 depends on the unknown function f , the optimal bandwidth obtained by such a procedure still depends on

f . We have then to build a procedure avoiding to deal with unknown quantities in practice. In this respect, we estimate the
function f and introduce the cross-validation criterion defined as

MT ,h =

∫
f 2Th(x)dx −

2
T 2

n∑
i=1

n∑
j=1
j̸=i

∫ Ti

Ti−1

∫ Tj

Tj−1

Kh(Xs − Xt )dsdt,

where, for some n ∈ N, δ =
T
n and Tj = jδ, 1 ≤ j ≤ n. The optimal window selection rule is performed then by minimizing

MT ,h with respect to h.

Remark 1. Similarly to the discrete case, introduce the quantity

fT ,−i(x) :=
1

(n − 1)δ

n∑
j=1
j̸=i

∫ Tj

Tj−1

Kh(x − Xt )dt,

that stands as the kernel estimate of f while the part {Xt : t ∈ [Ti−1, Ti]} of the process is leaved out. An alternative asymptotic
equivalent cross-validation criterion is given by

1
n

n∑
i=1

∫
f 2T ,−i(x)dx −

2
T

n∑
i=1

∫ Ti

Ti−1

fT ,−i(Xs)ds.

2. Results

Introduce now the assumptions necessary to establish our results gathered together here for easy reference. Let K (2) be
the convolution product of K with itself. Notice that K (2) has the same properties as K . Whenever fXs,Xt stands as the join
density of the vector (Xs, Xt ) and fXs is the marginal density of Xs, set from now on

gs,t := fXs,Xt − fXs fXt , g0,u := gu, ∥.∥∞ := sup
(y,z)∈R2

|.|.
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