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a b s t r a c t

In this note, we establish a central limit theorem for the maximum likelihood estimator of
the degree parameter in a networkmodel with degree heterogeneity and homophily when
the number of nodes goes to infinity.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Two types of features commonly exist in social and econometric network data: degree heterogeneity and homophily.
The first characterizes the variation in the node degrees, where some nodes have many links and some others have few
links (e.g., Barabási and Albert, 1999). The second characterizes the phenomenon that the nodes tend to form connections
with those like themselves (e.g., McPherson et al., 2001). To model how the degree heterogeneity and homophily affect the
link formation, Graham (2017) introduces a network model with ‘‘fixed effects’’, which generalizes the β-model (Chatterjee
et al., 2011) to allow homophily.

Graham’s model can be described as follows. Consider an undirected graph Gn on n ≥ 2 agents labeled by 1, . . . , n. Let
aij ∈ {0, 1} be an indicator of whether there is a link between agents i and j. That is, if there is a link between i and j, then
aij = 1; otherwise, aij = 0. Denote A = (aij)n×n as the symmetric adjacency matrix of Gn. We assume that there are no
self-loops, i.e., aii = 0. The model postulates that aij’s are independently distributed by Bernoulli distributions, in which a
link connects agents i and j with probability

P(aij = 1) =
exp(Z⊤

ij γ + βi + βj)

1 + exp(Z⊤

ij γ + βi + βj)
. (1)

In the above equation, Zij is the dyad-level vector between agents i and j constructed by vectors of agent-level attributes
Xi, i.e., Zij = g(Xi, Xj) for some symmetric function g(·, ·). For example, we can use g(Xi, Xj) = ∥Xi − Xj∥1 to measure the
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similarity. The parameter γ quantifies the magnitude of the homophily, while the parameter βi quantifies the strength of
agent i to participate in network connection.

The asymptotic property of model (1) is nonstandard since the number of parameters increases as the number of nodes
grows and only one network is observed. Graham (2017) proposes two types of estimators for the homophily parameter
– the tetrad logit estimator and the maximum likelihood estimator (MLE) – and establishes their asymptotic distributions.
However, the asymptotic distribution of the MLE for the degree parameter has not been explored in his paper. In this note,
we further establish the central limit theorem for the MLE of the degree parameter.

For the remainder of this paper, we proceed as follows. We present the central limit theorem in Section 2. We evaluate
the asymptotic result by simulations in Section 3. Some further discussion is provided in Section 4. All proofs are relegated
to the online supplementary material.

2. Main results

Let d = (d1, . . . , dn)⊤ be the degree sequence of Gn, where di =
∑

jaij. Given the observed network Gn, the log-likelihood
for model (1) is

ℓ(γ, β) =

∑
i<j

Z⊤

ij γaij +
∑

i

βidi −
∑
i<j

log(1 + eZ
⊤
ij γ+βi+βj ). (2)

Following Graham (2017), we assume that γ ∈ Γ and β ∈ Ξ , where Γ ⊂ Rp with a fixed dimension p and Ξ ⊂ Rn are
compact subsets. For the convenience of notation, we replace the condition β ∈ Ξ by ∥β∥∞ ≤ Lwhere L is a fixed constant.
Assume that E[ℓ(γ, β)|Z, γ∗, β∗

] is uniquely maximized at γ = γ∗ and β = β∗, where γ∗, β∗ denote the true parameters
under which the data are generated. We further assume that all Zij’s lie in one compact subset. Since γ and Zij’s are all in
compact subsets, they are bounded such that we have

|Z⊤

ij γ| ≤ κ, 1 ≤ i ̸= j ≤ n, (3)

where κ is a constant. Following Graham (2017), we study the restricted joint maximum likelihood estimation for γ ∈ Γ
and ∥β∥∞ ≤ L and define the MLE as

(̂γ, β̂) = argmax
γ∈Γ ,∥β∥∞≤L

ℓ(γ, β),

where γ̂ = (γ̂1, . . . , γ̂p) and β̂ = (β̂1, . . . , β̂n) are the MLEs of γ and β, respectively. Then the likelihood equations are

di =

∑
j̸=i

eZ
⊤
ij γ+βi+βj

1 + eZ
⊤
ij γ+βi+βj

, i = 1, . . . , n,

∑
i<j

Zijaij =

∑
i<j

Zije
Z⊤
ij γ+βi+βj

1 + eZ
⊤
ij γ+βi+βj

.

(4)

We use superscript ‘‘0’’ to denote the interior of a set. If γ ∈ Γ 0 and β ∈ Ξ 0, then the solution to the above system of
equations is precisely the MLE.

Denote the covariance matrix of d = (d1, . . . , dn) by Vn = (vij)n×n, where

vij =
eZ

⊤
ij γ+βi+βj

(1 + eZ
⊤
ij γ+βi+βj )2

, vii =

∑
j̸=i

vij (i, j = 1, . . . , n; i ̸= j). (5)

It is also the Fisher information matrix for β. Let v̂ii be the estimator of vii by replacing γ with γ̂ and keeping β unchanged.
The central limit theorem is stated below.

Theorem1. Assume that γ∗
∈ Γ and A ∼ Pγ∗,β∗ , wherePγ∗,β∗ denotes the probability distribution (1) on A under the parameters

γ∗ and β∗. If ∥β∗
∥∞ ≤ L, then for any fixed r ≥ 1, as n → ∞, the vector {v̂

1/2
11 (β̂1 − β∗

1 ), . . . , v̂
1/2
rr (β̂r − β∗

r )} converges in
distribution to the r-dimensional standardized multivariate normal distribution.

Remark 1. Let β̂(γ∗) be the profile MLE of β, i.e.,

β̂(γ∗) = argmax
β∈Ξ

ℓ(γ∗, β).

In Lemma 6 of the supplementary material in Graham (2017), Graham obtains the central limit theorem for the vector
(β̂1(γ∗), . . . , β̂r (γ∗))⊤. Here, we obtain the asymptotic distribution of the MLE β̂(̂γ), which is different.

Remark 2. By Theorem 1, for any fixed i, the convergence rate of β̂i is 1/v
1/2
i,i in the magnitude of n−1/2 when γ∗ and β∗ are

bounded.
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