Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/stapro)

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Brillinger-mixing point processes need not to be ergodic Lothar Heinrich

University of Augsburg, Institute of Mathematics, 86135 Augsburg, Germany

a r t i c l e i n f o

Article history: Received 9 September 2017 Received in revised form 18 December 2017 Accepted 11 February 2018 Available online 21 February 2018

MSC: primary 60G55 44A60 secondary 37A25 60F20

Keywords: Factorial cumulant measures Mixing and ergodicity Poisson cluster processes Moment problem for point processes

a b s t r a c t

Recently, it has been proved that a stationary Brillinger-mixing point process is mixing (of any order) if its moment measures determine the distribution uniquely. In this paper we construct a family of non-ergodic stationary point processes as mixture of two distinct Brillinger-mixing Neyman–Scott processes having the same moment measures. © 2018 Published by Elsevier B.V.

1. Introduction and preliminaries

A (random) *point process* (short: PP) Ψ on the Euclidean space \R^d is defined to be a ($\cal F$, $\cal N$)-measurable mapping from a hypothetical probability space $[\Omega, \mathcal{F}, P]$ into the measurable space $[N, \mathcal{N}]$ of all locally finite counting measures ψ (with countable support s(ψ)) acting on the σ -algebra ${\cal B}^d$ of Borel sets in \R^d equipped with the smallest σ -algebra $\cal N$ containing all the sets $\{\psi \in N : \psi(B) = j\}$ for $j \in \mathbb{N} := \{0, 1, ...\}$ and any bounded $B \in \mathcal{B}^d$. We briefly write $\Psi \sim P$, where the probability measure $P = \mathbf{P} \circ \Psi^{-1}$ induced on [N, N] by the mapping Ψ is called the *distribution* of Ψ . A PP $\Psi \sim P$ is called stationary or homogeneous if $P(T_XY) = P(Y)$ for all $x \in \mathbb{R}^d$ and $Y \in \mathcal{N}$, where $T_XY := \{T_X\psi : \psi \in Y\}$ with $(T_x \psi)(\cdot) = \psi((\cdot) + x)$. Note that it suffices to check stationarity for all $Y = \{\psi \in \mathbb{N} : \psi(B_1) = k_1, \ldots, \psi(B_\ell) = k_\ell\}$ with bounded $B_1, \ldots, B_\ell \in \mathcal{B}^d, k_1, \ldots, k_\ell \in \mathbb{N}, \ell \geq 1$. We will briefly write $P \in \mathcal{P}_\lambda^\infty$ if $\Psi \sim P$ is stationary with positive intensity $\lambda =$ **E** $\Psi([0,1]^d)$ and ${\bf E} \Psi^k([0,1]^d) < \infty$ for all $k \geq 1$, where **E** denotes the expectation w.r.t. **P**. Further we need the *probability generating functional* (short: PGF) of Ψ ∼ *P* defined for all Borel measurable v | R *d* ↦→ [0, 1] with 1 − v having bounded support by

$$
G_P[v] := \int_N \prod_{x \in S(\psi)} v(x)^{\psi(\{x\})} P(d\psi).
$$
\n(1.1)

Note that already the family $G_P[1+\sum_{i=1}^k(z_i-1)\mathbf{1}_{B_i}]$ for $z_1,\ldots,z_k\in[0,1]$ and bounded, pairwise disjoint $B_1,\ldots,B_k\in\mathcal{B}^d$ and $k \ge 1$ determines the distribution *P* on [N, N]. For a rigorous introduction into and further background of PP theory the reader is referred to [Daley](#page--1-0) [and](#page--1-0) [Vere-Jones](#page--1-0) [\(2008\)](#page--1-0).

<https://doi.org/10.1016/j.spl.2018.02.029> 0167-7152/© 2018 Published by Elsevier B.V.

E-mail address: [heinrich@math.uni-augsburg.de.](mailto:heinrich@math.uni-augsburg.de)

The Brillinger-mixing property of a PP $\Psi \sim P \in \mathcal{P}_\lambda^\infty$ is based on its higher-order factorial cumulant measures $\gamma_P^{(k)}$ for $k \geq 2$ which can be defined by means of (1.1) as follows:

$$
\gamma_P^{(k)}\left(\underset{i=1}{\overset{k}{\times}}B_i\right) := \lim_{z_1,\ldots,z_k \uparrow 1} \frac{\partial^k}{\partial z_1\cdots \partial z_k} \log G_P\big[1+\sum_{i=1}^k (z_i-1)\mathbf{1}_{B_i}\big] \tag{1.2}
$$

for all bounded $B_1, \ldots, B_k \in B^d$. The rule of logarithmic differentiation applied on the right-hand side of [\(1.2\)](#page-1-0) yields the representation of $\gamma_P^{(k)}$ in terms of the factorial moment measures $\alpha_P^{(\ell)}$ of order $\ell=1,\ldots,k$:

$$
\gamma_P^{(k)}\left(\frac{k}{\times B_i}\right) = \sum_{\ell=1}^k (-1)^{\ell-1} (\ell-1)! \sum_{K_1 \cup \dots \cup K_\ell = \{1,\dots,k\}} \prod_{j=1}^\ell \alpha^{(\#K_j)}\left(\frac{k}{\in K_j} B_i\right),\tag{1.3}
$$

for all bounded $B_1,\ldots,B_k\in\mathcal{B}^d$, where the inner sum \sum stretches over all decompositions of the set $\{1,\ldots,k\}$ into disjoint subsets K_1,\ldots,K_ℓ with cardinality $\#K_j\ge 1$ for $j=1,\ldots,\ell$, see also [Leonov](#page--1-1) [and](#page--1-1) [Shiryaev](#page--1-1) [\(1959\)](#page--1-1) and [Krickeberg](#page--1-2) [\(1982\)](#page--1-2). Here, the kth-order factorial moment measure $\alpha_{P}^{(k)}$ is defined by

$$
\alpha_P^{(k)}\left(\underset{i=1}{\overset{k}{\times}}B_i\right) = \int_{N} \int_{B_1} \int_{B_2} \cdots \int_{B_k} (\psi - \sum_{i=1}^{k-1} \delta_{x_i}) (dx_k) \cdots (\psi - \delta_{x_1}) (dx_2) \psi(dx_1) P(d\psi) \tag{1.4}
$$

with Dirac measure $\delta_x(\cdot)$ defined by $\delta_x(B) = \mathbf{1}_B(x)$ for $x \in \mathbb{R}^d$ and $B \in \mathcal{B}^d$. Note that [\(1.4\)](#page-1-1) can be obtained from [\(1.1\)](#page-0-0) if on the right-hand side of [\(1.2\)](#page-1-0) the 'log' is omitted. By standard techniques from measure theory it is easily seen from [\(1.3\)](#page-1-2) that $\gamma_P^{(k)}$ can be extended to a locally finite (in general) signed measure on [(\mathbb{R}^d)^k, \mathcal{B}^{dk}].

Due to the stationarity of $\Psi \sim P \in \mathcal{P}^{\infty}_{\lambda}$ it follows from [\(1.4\)](#page-1-1) and [\(1.3\)](#page-1-2) that $\gamma^{(k)}_P(\times_{i=1}^k (B_i + \chi))$ does not depend on $x \in \mathbb{R}^d$. This means that, for any $k\geq 2$, there exists of a unique *reduced factorial cumulant measure* $\gamma_{P,red}^{(k)}$ on [(\mathbb{R}^d) $^{k-1}$, $\mathcal{B}^{d(k-1)}$] satisfying the disintegration formula

$$
\gamma_P^{(k)}\left(\begin{array}{c} k \\ k \\ i=1 \end{array}\right) = \lambda \int_{B_k} \gamma_{P,red}^{(k)}\left(\begin{array}{c} k-1 \\ \times \\ i=1 \end{array}\right) dx.
$$
 (1.5)

According to the Hahn–Jordan decomposition of signed measures, for each $k \ge 2$, $\gamma_{P,red}^{(k)}$ can be written as difference $\gamma_{P,red}^{(k)} = \gamma_{P,red}^{(k)+} - \gamma_{P,red}^{(k)-}$ of two (positive) measures $\gamma_{P,red}^{(k)+}$ and $\gamma_{P,red}^{(k)-}$ both concentrated on two disjoint sets. The corresponding *total variation measure* $|\gamma^{(k)}_{P,red}|$ *of* $\gamma^{(k)}_{P,red}$ *is then defined by the sum*

$$
|\gamma_{P,\text{red}}^{(k)}|(B) := \gamma_{P,\text{red}}^{(k)+}(B) + \gamma_{P,\text{red}}^{(k)-}(B) \text{ for } B \in \mathcal{B}^{d(k-1)}.
$$

The following weak-dependence condition for PPes has been introduced by D.R. Brillinger in [Brillinger](#page--1-3) [\(1975\)](#page--1-3) (see [Brillinger,](#page--1-4) [1991](#page--1-4) for a historical review) and used by many authors to derive asymptotic normality of shot-noise processes, see e.g. [Heinrich](#page--1-5) [and](#page--1-5) [Schmidt](#page--1-5) [\(1985\)](#page--1-5), and of various empirical functionals related with (factorial) moment measures defined on large sampling windows, see e.g. [Biscio](#page--1-6) [and](#page--1-6) [Lavancier](#page--1-6) [\(2016\)](#page--1-6), [Guan](#page--1-7) [and](#page--1-7) [Sherman](#page--1-7) [\(2007\)](#page--1-7), [Heinrich](#page--1-8) [and](#page--1-8) [Klein](#page--1-8) [\(2014\)](#page--1-8), [Karr](#page--1-9) [\(1987\)](#page--1-9) and [Krickeberg](#page--1-2) [\(1982\)](#page--1-2).

Cond(B): A PP $\Psi \sim P \in \mathcal{P}^{\infty}_{\lambda}$ is said to be *Brillinger-mixing* if the signed measures $\gamma_{P,red}^{(k)}$ have finite total variation $|\gamma_{P,\text{red}}^{(k)}|(\mathbb{R}^{d(k-1)})$ for all $k \geq 2$.

Besides the Poisson PP $\Pi_\lambda\in \mathcal{P}^\infty_\lambda$ with PGF $G_{\Pi_\lambda}[v]=\exp\{\lambda\,\int_{\R^d}(v(x)-1)\,\mathrm{d} x\}$ (i.e. $\gamma^{(k)}_{\Pi_\lambda}\equiv 0$ for $k\geq 2$) there are quite a few classes of Brillinger-mixing PPes, see e.g. [Biscio](#page--1-6) [and](#page--1-6) [Lavancier](#page--1-6) [\(2016\)](#page--1-6), [Heinrich](#page--1-5) [and](#page--1-5) [Schmidt](#page--1-5) [\(1985\)](#page--1-5) and [Heinrich](#page--1-10) [\(1988\)](#page--1-10).

One of them is formed by *Poisson cluster PPes* $\varPsi_{pc}(\cdot)\coloneqq\sum_{x\in s(\varPhi)}\!\Phi_s^{(x)}((\cdot)-x)\sim P_{pc}$ *with the Poisson PP* $\varPhi\sim \varPi_{\lambda_c}$ *of cluster* centres *x* and the countable family $\varPhi_s^{(x)}$ (independent of \varPhi) of independent copies of a generic (**P**−a.s.) finite PP $\varPsi_s\sim P_s$, see Chapt. 10.2 in [Daley](#page--1-0) [and](#page--1-0) [Vere-Jones](#page--1-0) [\(2008\)](#page--1-0). It turns out that $\gamma_{p_{pc}}^{(k)}\geq0$ for $k\geq2$ and $P_{pc}\in\mathcal{P}^\infty_\lambda$ with $\lambda=\lambda_c$ $\textbf{E}\Psi_{\text{s}}(\mathbb{R}^d)$ iff $E \Psi_s^k(\R^d)<\infty$ for all $k\geq 2$ and the latter implies that $\varPsi_{pc}\sim P_{pc}$ satisfies Cond(B). It is noteworthy that the diameter of $s(\varPhi_s)$ has no explicit influence on the Brillinger-mixing property. For later purposes we give the PGF of Ψ*pc* :

$$
G_{P_{pc}}[v] = \exp\left\{\lambda_c \int_{\mathbb{R}^d} (G_{P_s}[v((\cdot)+x)]-1) \, dx\right\}.
$$
 (1.6)

Cond(B) expresses some kind of simultaneous asymptotic uncorrelatedness of the numbers $\Psi(B_1), \ldots, \Psi(B_k)$ when B_i and *B_i* are separated from each other by a large distance for $1 \le i < j \le k$ and any $k \ge 2$. As shown in the recently submitted paper [\(Heinrich,](#page--1-11) [2017\)](#page--1-11) Cond(B) implies asymptotic mutual independence of these numbers provided the moment (or cumulant) measures ofΨ ∼ *P* determine *P* uniquely, see also [Ivanoff\(1982\)](#page--1-12) for a stronger additional assumption. In other words, the additional assumption of determinacy of the moment problem for the PP $\Psi \sim P$ ensures that this PP is mixing (of any order), i.e. $P(T_x Y_1 \cap Y_2) \longrightarrow P(Y_1) P(Y_2)$ as $||x|| \rightarrow \infty$ for any $Y_1, Y_2 \in \mathcal{N}$. For sufficient conditions put on the moment measures or their densities to yield a unique distribution *P* the reader is referred to [Zessin](#page--1-13) [\(1983\)](#page--1-13). To be complete, we define Download English Version:

<https://daneshyari.com/en/article/7548130>

Download Persian Version:

<https://daneshyari.com/article/7548130>

[Daneshyari.com](https://daneshyari.com/)