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a b s t r a c t

This paper investigates themoments of a diffusionprocess to derive the formulas for thenth
exact moment. Instead of seeking the density or moment-generating functions, we utilize
stochastic integrals and their properties to obtain the moments.
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1. Introduction

In this paper we consider a diffusion process governed by the stochastic differential equation

dXt = (αXt + β)dt +

√
γX2

t + δXt + ζdBt (1)

where Bt denotes a one-dimensional Brownian motion. This form of stochastic differential equations can represent the
several well-known stochastic processes as its special cases. For instance, when γ and δ are zero, the diffusion process
becomes the Ornstein–Uhlenbeck process. When γ and ζ are zero, it becomes the square-root process (Avellaneda and
Laurence, 2000). This type of process finds various applications in financial modeling, including interest rate models,
stochastic volatility models and time series models (Cox et al., 1985; Demni and Zani, 2009; Delbaen and Shirakawa, 2002;
Barone-Adesi et al., 2005; Heston, 1993; Glasserman and Kim, 2011; Vasicek, 1977).

In typical situations, the density function or the moment-generating function of a random variable is first obtained or
given. And then its moments are computed either by integrating a power function together with the density function or by
differentiating the moment-generating function. As to diffusion processes, one can find the transition probability density
functions by solving the corresponding Kolmogorov forward or Fokker–Planck equations for special cases (see Feller, 1951,
Wong, 1964). One can also obtain the moment-generating function of the square-root process by using its characteristic
function and the corresponding Ricatti equations (Avellaneda and Laurence, 2000; Jondeau et al., 2007). Even though the
density or moment-generating functions can be found for some special cases, it would not be straightforward to compute
the moments if one need to obtain high-order moments.

Themain purpose of this paper is to investigate themoments of the diffusion process (1) and to derive the formulas for the
moments. Instead of seeking the density ormoment-generating functions,we utilize stochastic integrals and their properties
to find the moments. These formulas provide a simple computation of the nth moment. This leads to a very effective means
to validate the performance of numerical simulations in stochastic modeling when applying the diffusion process (1).

The rest of the paper is organized as follows. In Section 2 we provide the main results by deriving the formulas of the
moments. In Section 3 a numerical experiment is performed to compute the moments of the diffusion process. Section 4
concludes the paper.
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2. Main results

Suppose that (Ω,F,P) is a probability space. Let X = {Xt : t ≥ 0} be a diffusion process on (Ω,F,P) with state space
R; that is, Xt takes values in R for all t ≥ 0. We consider the diffusion process X as the solution of the stochastic differential
equation{

dXt = (αXt + β)dt +

√
γX2

t + δXt + ζdBt

X0 = x0
(2)

where B = {Bt : t ≥ 0} is a one-dimensional Brownian motion. We assume that Xt is well-defined for all t ≥ 0 so that
negative values are not achieved inside the square-root sign. We let µ(x) = αx + β and σ (x) =

√
γ x2 + δx + ζ . Then, we

have |µ(x)| + |σ (x)| ≤ K (1 + |x|) for some constant K > 0 so that there exists at least a unique weak solution of Eq. (2)
(see Stroock and Varadhan, 1979).

Throughout this paper we assume that all the moments of Xt are finite. More precisely, we suppose E[Xn
t ] < ∞ for

all nonnegative integer n. For instance, the diffusion process X becomes the Ornstein–Uhlenbeck process when γ and δ are
zero. Thus, its nthmoment is finite because theOrnstein–Uhlenbeck process is a Gaussian process. In addition,X becomes the
square-root process when γ and ζ are zero, and the distribution of the square-root process follows a noncentral chi-squared
distribution (see Avellaneda and Laurence, 2000, Cox et al., 1985). Hence, its nth moment is finite.

We define mn(t)
△
= E[Xn

t ] to represent the nth moment of Xt for n = 0, 1, 2, · · · , where m0(t) = E[X0
t ] ≡ 1. In what

follows we consider a power function f (x) = xn and let Yt = f (Xt ) so that Yt is again an Ito process. Applying Ito’s Lemma on
Yt , we have dYt = f ′(Xt )dXt +

1
2 f

′′(Xt )(dXt )2 which results in

dXn
t = (anXn

t + bnXn−1
t + cnXn−2

t )dt + nXn−1
t

√
γX2

t + δXt + ζdBt (3)

where an, bn and cn are defined by

an
△
= nα +

1
2
n(n − 1)γ , bn

△
= nβ +

1
2
n(n − 1)δ, cn

△
=

1
2
n(n − 1)ζ .

Here we set a0 ≡ 0, b0 ≡ 0 and c0 ≡ 0. Eq. (3) can be written in integral form

Xn
t = xn0 +

∫ t

0
(anXn

s + bnXn−1
s + cnXn−2

s )ds +

∫ t

0
nXn−1

s

√
γX2

s + δXs + ζdBs. (4)

To find the moments of the process Xt , we take expectation on both sides of (4) and differentiate with respect to t on each
side so that we obtain the following differential equation: for n ≥ 1{

m′

n(t) = anmn(t) + bnmn−1(t) + cnmn−2(t)
mn(0) = xn0

(5)

with m0(t) ≡ 1 and m−1(t) ≡ 0.

Theorem 1. Suppose that the elements of the set {a0, a1, · · · , aN} are distinct. Then the solution of (5) for n = 0, · · · ,N is

mn(t) =

n∑
i=0

ξni exp(ait) (6)

where ξni satisfies the following recurrence relations: for 0 ≤ i ≤ n − 2

ξni =
bnξn−1,i + cnξn−2,i

ai − an
, ξn,n−1 =

bnξn−1,n−1

an−1 − an
, ξnn = xn0 −

n−1∑
i=0

ξni

with ξ0,0 = 1, ξ1,1 = (x0 +
b1
a1
) and ξ1,0 = −

b1
a1
.

Proof. We start withm0(t) ≡ 1. Given the preceding moments, the analytic solution to (5) is

mn(t) = exp(ant)
(
xn0 +

∫ t

0
qn(s) exp(−ans)ds

)
(7)

with qn(t)
△
= bnmn−1(t)+cnmn−2(t). For instance, qn(t) is equal to b1 when n = 1 so thatwehavem1(t) = (x0+

b1
a1
)ea1t− b1

a1
ea0t

with a0 ≡ 0. For n = 2, we have q2(t) = b2m1(t)+ c2, and it is straightforward to find the definite integral of q2(t) exp(−a2t)
from zero to t . This leads to the analytic solution for m2(t) that is a linear combination of ea0t , ea1t and ea2t . Suppose that
mk(t) is a linear combination of ea0t , ea1t , · · · , eakt for k = 0, 1, · · · , n − 1. Then qn(t) is also a linear combination of
ea0t , ea1t , · · · , ean−1t . Because the elements of the set {a0, a1, · · · , aN} are distinct, Eq. (7) implies that mn(t) should be a
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