
STAPRO: 8189 Model 3G pp. 1–7 (col. fig: nil)

Please cite this article in press as: Davies T.M., et al., On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation.
Statistics and Probability Letters (2018), https://doi.org/10.1016/j.spl.2018.02.067.

Statistics and Probability Letters xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On the utility of asymptotic bandwidth selectors for spatially
adaptive kernel density estimation
Tilman M. Davies a,*, Claire R. Flynn b,a, Martin L. Hazelton c

a Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
b Metservice, Wellington, New Zealand
c Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

a r t i c l e i n f o

Article history:
Received 29 August 2017
Received in revised form 13 January 2018
Accepted 26 February 2018
Available online xxxx

Keywords:
Global bandwidth
AMISE
Spatial point process
Kernel smoothing
Normal scale rule

a b s t r a c t

Implementation of the spatially adaptive kernel estimator relies on choice of a ‘global
bandwidth’. We derive the closed-form asymptotic bias for this estimator with the aim
of developing relevant selectors, and note non-uniform convergence hinders its usability
for this purpose.
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1. Introduction 1

Estimation of the density or intensity function fromplanar point process data is arguably themost fundamental inferential 2

problem in spatial statistics. By far the most common approach in practice is to apply kernel smoothing. The majority 3

of the literature has focused on kernel density (and intensity) estimation using a spatially uniform amount of smoothing 4

controlled by a fixed bandwidth. However, spatial datasets frequently exhibit pronounced inhomogeneity. For example, 5

data in geographical epidemiology typically combine tight clusters of points identifying disease cases in towns and cities 6

with large sparsely populated regions. This leads to huge spatial variation in smoothing requirements, with less wanted 7

in urban areas to retain detail, and much more required elsewhere to avoid stochastic artefacts (e.g. Davies and Hazelton, 8

2010). 9

In response, spatially adaptive kernel density estimation has become increasingly common for planar data. A popular 10

version of this type of methodology is the sample point adaptive density estimator, defined by 11

f̂ (x) =
1
n

n∑
i=1

Khi (x − xi) (1) 12

where x1, . . . , xn are the bivariate coordinates of n independent, identically distributed observations, and Kh(x) = h−2K (x/h) 13

is a scaled kernel function defined in terms of an unscaled kernel K which is a spherically symmetric probability density 14

function. The scaling factor h is referred to as the bandwidth, and determines the degree of smoothing. In (1) this is allowed
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to vary from data point to data point, in principle permitting the degree of smoothing to adapt to local requirements. In1

contrast, h1 = h2 = · · · = hn for fixed bandwidth estimation.2

The preeminent implementation of the sample point adaptive density estimator is due to Abramson (1982). He proposed3

setting the local bandwidths according to4

hi = h(xi) = h0f (xi)−1/2 (2)5

where h0 is the global bandwidth and f (xi)−1/2 a local adjustment factor. The form of the latter is very intuitive, indicating6

the need for progressively more smoothing as the density becomes smaller. Eq. (2) is often rewritten as hi = h̃0f (xi)−1/2γ −1
7

where γ is the geometric mean of the local adjustments, so that h̃0 operates on a comparable scale to a fixed bandwidth. For8

simplicity we tend to work with h0 for mathematical developments, and h̃0 when comparing empirical results between the9

fixed and adaptive cases.10

The bandwidths defined by (2) can become arbitrarily large in the tails of f . This can impact negatively both on the11

practical performance of the adaptive estimator and its theoretical properties. A solution is to clip the local bandwidths at12

some pre-specified maximum size (Abramson, 1982; Hall and Marron, 1988). One way of achieving this is to truncate above13

all bandwidths at some (large) multiple of the smallest local bandwidth. This methodology is employed in the numerical14

experiments in Section 3.15

While the local bandwidth factors describe the relative smoothing requirements from location to location, the overall16

performance of the adaptive estimator f̂ still depends on the choice of global bandwidth h0. In deriving a methodology to17

do this, it seems sensible to investigate what lessons can be learned from the extensive literature on bandwidth selection18

for fixed bandwidth estimators. There are a range of types of bandwidth selectors that have proven effective for density19

estimation, including normal reference rules (Silverman, 1986), plug-in methods (e.g. Sheather and Jones, 1991) and cross-20

validation techniques (e.g. Hall et al., 1992). A unifying theme with all these methods is the use of large-sample asymptotic21

analysis for a deterministic n and a diminishing bandwidth i.e. as n → ∞, h → 0 and nh → ∞. Their success reflects the22

fact that the asymptotics tend to provide rather good approximations to finite sample behaviour in fixed kernel estimation.23

In what follows, we also proceed under these conditions.24

For the adaptive estimator f̂ , the only practical method for selecting h0 to have been published thus far is an unbiased25

cross-validation technique suggested by Silverman (1986). The development of more sophisticated approaches has been26

hampered by the complexity of the asymptotic analysis. In particular, while explicit asymptotic forms of the mean and27

variance of f̂ have been published for the univariate adaptive density estimator (Silverman, 1986; Hall and Marron, 1988),28

there are no corresponding results for the bivariate case in the literature. The first purpose of this paper is to fill this gap by29

providing explicit results in the bivariate case; see Section 2.30

A critical feature of the existing asymptotics for the adaptive estimator is that the expansions for bias and variance do31

not converge uniformly over R2 (Hall and Marron, 1988). This immediately raises doubts about the utility of these results32

as a basis for developing practical data-driven selectors for h0. The second goal of this article is to explore this matter in33

some detail. We pay particular attention to the behaviour of the bias, contrasting asymptotic approximations with true34

finite sample behaviour (as described by very large numbers of simulations). The results are presented in Section 3 and a35

discussion follows in Section 4. In the supplementarymaterialswe provide fuller plots of some simulation results and further36

illustrate practical ramifications through a real-world example.37

2. Asymptotic results38

Inwhat follows,we assume standard regularity conditions. Specifically,we assume that all fourth order partial derivatives39

of f are continuous over R2, and that
∫
K (x) dx = 1;

∫
xK (x) dx = 0; and

∫
x2vK (x) dx = 1, with v ∈ {1, 2} indexing40

the bivariate coordinate x = [x1, x2]T. As mentioned earlier, we assume that any sample used to estimate the density f is41

comprised of independent and identically distributed observations.42

2.1. Fixed bandwidth43

Explicitly denote the fixed bandwidth estimator by f̄ (x); we obtain f̄ from (1) when setting hi = h for all i. The asymptotic44

properties of f̄ are well established (see e.g. Silverman, 1986; Wand and Jones, 1995). Both asymptotic mean and variance45

expressions are uniformly convergent over R2, and hence can safely be integrated. Squaring the bias, summing with the46

variance and integrating over R2 yields the familiar asymptotic mean integrated squared error (AMISE);47

AMISE
[
f̄
]

=
1

nh2 R(K ) +
1
4
h4

∫
trace

[
Hf (z)

]
dz, (3)48

where R(K ) =
∫
K (z)2 dz andHf (z) is the 2× 2Hessianmatrix of f . The AMISE typically provides an excellent approximation49

to the exact mean integrated squared error of f̄ (x), and has proven highly successful as the basis for development of practical50

bandwidth selectors.51
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