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a b s t r a c t

Causation probabilities of multiple-run-rules based on patterns of multi-state trials have
been used and studied in various fields such as quality control, reliability of engineering
system, biology, DNA sequence analysis and survival analysis. In thismanuscript, we derive
the limiting results for two types of conditional causation probabilities for multiple-run-
rules by using the finite Markov chain imbedding technique. Extension and numerical
examples are given to illustrate the theoretical results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Multiple-run-rules ϕ = (ϕ1, . . . , ϕd) based multi-state trials {Xt}
n
t=1 have been used successfully in various scientific 2

fields, such as quality control, reliability systems, biology, DNA sequence analysis, risk management, and survival analysis. It 3

becomes an indispensable tool especially in quality control for making higher quality products and more reliably (Bersimis 4

et al., 2014). The well-knownWestern Electric quality control scheme is a typical example, see Montgomery (2001). 5

The waiting time distribution of multiple-run-rules has been studied by many researchers especially when {Xt}
n
t=1 is a 6

sequence of first-order Markov dependent trials. An illustration of the technique is seen in Fu et al. (2016) on the study of 7

unconditional causation probabilities for a specified simple pattern or a group of simple patterns of multiple-run-rules for 8

both independent and identically distributed (i.i.d.) andMarkov dependent trials. In practice, researchers are often interested 9

in analyzing the remaining useful life or the survival time of a system. In this manuscript, we mainly study the long term 10

behavior of two types of conditional probabilities relating to system reliability based on multiple-run-rules for a sequence 11

of i.i.d. and Markov dependent trials. In order to achieve this goal, the finite Markov chain imbedding (FMCI) technique and 12

results of asymptotic distribution of runs and patterns developed in Fu and Johnson (2009) and Johnson and Fu (2014) will 13

be used. The FMCI technique has been used in studying the reliability of various engineering systems and quality control 14

systems (see, e.g., Koutras et al., 2007), a review in developments on this technique can be found in Cui et al. (2010). A 15

simple numerical example will be given to illustrate our theoretical results. 16

2. Main results 17

Let {Xt}
n
t=1 be a sequence of independently and identically distributed (i.i.d.) or Markov dependent m-state random 18

variables defined on a set S = {a1, . . . , am} of m symbols. 19
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Definition 1. We say that Λ is a simple pattern of length k if it is composed of a specified sequence of k symbols (k is fixed)1

in S , i.e., Λ = x1x2 · · · xk, xi ∈ S for i = 1, . . . , k.2

Let Λ1 and Λ2 be two simple patterns of lengths k1 and k2, respectively. We say that Λ1 and Λ2 are distinct if neither one3

is a segment of the other. Define the union of two simple patterns Λ1 ∪ Λ2 to be the occurrence of either the pattern Λ1 or4

the pattern Λ2.5

Definition 2. Λ = ∪
k
i=1Λi is called a compound pattern if it is a union of k (k ≥ 2) distinct simple patterns Λi, i = 1, . . . , k.6

Note that the lengths of the simple patterns do not have to be the same.7

Definition 3. Define the waiting time of the occurrence of a simple or compound pattern Λ as8

W (Λ) = min
{
n :

the pattern Λ has occurred
in the sequence {Xt}

n
t=1

}
.9

Let ϕi = ϕ(Λi) be a decision rule based on the occurrence of a pattern Λi (simple or compound) in the sequence {Xt}
n
t=1.10

It has been shown in Fu et al. (2016) that the reliability of a system with multiple-run-rules (ϕ1, . . . , ϕd) can be reduced to11

a system with a single run-rule ϕ(Λ) based on the compound pattern Λ = ∪
k
i=1Λi. Let W (Λi) be the waiting time for the12

occurrence of the simple pattern Λi, for i = 1, . . . , k. Mathematically, we define waiting time W (Λ) for the occurrence of13

the compound pattern Λ = ∪
k
i=1Λi to be14

W (Λ) = min(W (Λ1), . . .,W (Λk)).15

Given Λ, it is known that the random variable W (Λ) is finite Markov chain imbeddable. The homogeneous imbedded
Markov chain {Yt}

∞

t=0 defined on an arranged state space Ω has a transition probability matrixM composed of

M =

Ω \ A A
Ω \ A

A

[
N C
O I

]
,

whereA = {α1, . . . , αk} is the set of all absorbing states corresponding to simple patterns Λ1, . . . , Λk, respectively, N is the16

essential transition probability matrix, each row of the matrix C is composed of transition probabilities going from a state17

in Ω \ A to the absorbing states in A, O is a zero matrix, and I is an identity matrix of size k.18

The failure probability of a system is known to be19

P(W (Λ) = n) = ξ0N
n−1(I − N )1′, (1)20

where 1 = (1, 1, . . . , 1) is a row vector and ξ0 = (1, 0, . . . , 0) is a row vector as the initial state distribution of Y0.21

Furthermore, for any αi ∈ A, the unconditional causation probability is22

P(W (Λ) = n and W (Λi) = n) = ξ0N
n−1ci, (2)23

where ci is the ith column vector in C .24

We define two conditional causation probabilities of interest as

γn(αi) = P(W (Λi) = n|W (Λ) = n)

=
P(W (Λ) = n and W (Λi) = n)

P(W (Λ) = n)
(3)

and

θn(αi) = P(W (Λi) = n|W (Λ) > n − 1)

=
P(W (Λ) = n andW (Λi) = n)

P(W (Λ) > n − 1)
. (4)

The aspect of ‘causation’ in (2) is characterized by the probability of system failure at time n due to the occurrence ofΛ based25

solely on the simple pattern Λi. We call (3) the conditional cause of failure probability for the absorbing state αi and (4) the26

hazard probability for the absorbing state αi that denotes the conditional probability of system failure at time n due to the27

occurrence of Λ based solely on the simple pattern Λi given that the system has been working at least till time n − 1. The28

following two theorems show the ergodicity of the conditional cause of failure probability and the hazard probability.29

Let 1 > λ1 > |λ2| ≥ |λ3| · · · ≥ |λℓ| be eigenvalues of the essential matrix N with corresponding normalized right-hand30

side orthogonal column eigenvectors η1, η2, . . . , ηℓ (such that Nηi = λiηi for i = 1, . . . , ℓ). In order to simplify our proofs,31

we assume without loss of generality that the algebraic multiplicity of the largest eigenvalue λ1 is one. To prove our main32

results, we first prove Lemma 1 by using the result of Fu and Johnson (2009) on approximating the tail probabilities.33



Download English Version:

https://daneshyari.com/en/article/7548206

Download Persian Version:

https://daneshyari.com/article/7548206

Daneshyari.com

https://daneshyari.com/en/article/7548206
https://daneshyari.com/article/7548206
https://daneshyari.com

