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a b s t r a c t

We propose optimal weighting schemes for both mean and covariance estimations for
functional data based on local linear smoothing such that the L2 rate of convergence
is minimized. These schemes can self-adjust to the sampling plan and lead to practical
improvements.
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1. Introduction 1

In the past fewdecades, substantial efforts have beenmade that significantly advanced the field of functional data analysis 2

(FDA). Representativemonographs include Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Hsing and Eubank (2015), 3

Ramsay and Silverman (2005) and Zhang (2013). Recent developments in FDA, e.g., regression, classification, clustering and 4

manifold learning, are illustrated by a few survey articles (e.g., Cuevas, 2014; Marron and Alonso, 2014; Wang et al., 2016; 5

Reiss et al., 2017) and special journal issues (e.g., González-Manteiga and Vieu, 2007; Goia and Vieu, 2016; Kokoszka et 6

al., 2017). As an indispensable ingredient of many advanced methods, the estimation of mean and covariance functions 7

is fundamental in FDA. A typical functional dataset arises from a sample of functions {Xi : i = 1, . . . , n} collected from 8

n subjects, which are often assumed to be independent and identically distributed (i.i.d.) copies of a L2 stochastic process 9

X defined on a compact time domain I. The mean and covariance functions are defined by µ(t) = E{X(t)}, t ∈ I, and 10

γ (s, t) = Cov{X(s), X(t)}, s, t ∈ I, respectively. In practice, the measurements of each Xi are only available at Ni discrete 11

time points Tij ∈ I, j = 1, . . . ,Ni, and may contain noise eij at Tij, where {eij : i = 1, . . . , n; j = 1, . . . ,Ni} are often 12

assumed to be i.i.d. with zero mean and constant variance. Therefore, the observed functional data are often represented as 13

{(Yij, Tij) : i = 1, . . . , n; j = 1, . . . ,Ni} where Yij = Xi(Tij) + eij. 14

Various nonparametric methods have been applied to the estimation of µ and γ (e.g., Rice and Silverman, 1991; Cardot, 15

2000; Zhang and Chen, 2007; Paul and Peng, 2009; Xiao et al., 2013). Although not always emphasized, eachmethod usually 16
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adopts a particular weighting scheme in the estimation procedure, i.e., a strategy of allocating weights to observations in the1

objective function. In the FDA literature, themost commonly usedweighting schemes are the equal-weight-per-observation2

(OBS) scheme (e.g., Yao et al., 2005) and equal-weight-per-subject (SUBJ) scheme (e.g., Li and Hsing, 2010). See Section 2 for3

details. The two schemes are identical when {Ni : i = 1, . . . , n} are all equal but this rarely happens in longitudinal studies4

involving human subjects. This raises a natural, pragmatic but open question:Whichweighting scheme is better and is there5

an optimal weighting scheme?6

Recently Zhang and Wang (2016) made the first attempt to tackle this issue. Under both OBS and SUBJ schemes, they7

provided a comprehensive analysis of the mean and covariance function estimators and partitioned functional data into8

three types in terms of the rate of convergence: non-dense, dense, and ultra-dense. It was shown that the OBS scheme9

leads to a more efficient estimator for non-dense data while the SUBJ scheme is superior for ultra-dense data. Moreover, the10

authors proposed a new class of weighting schemes by considering a convex combination of the OBS and SUBJ weights and11

derived the optimal convex combination scheme, which we call the ‘‘ZW scheme’’ hereafter, for the L2 rate of the mean or12

covariance function estimator. Asymptotically the ZW scheme is as good as, if not better than, both OBS and SUBJ schemes,13

but this is not always guaranteed numerically.14

The main contribution of this article is threefold. First, we develop the optimal weighting schemes for both mean and15

covariance function estimations. These weighting schemes are optimal in terms of the L2 rate of convergence among all16

possible weighting schemes, and are always adaptive to the design in the sense that they self-adjust to the sampling plan17

regardless of whether the data are non-dense, dense, or ultra-dense. This adaptive feature is particularly important since in18

practice one would not know for sure which one of the three design settings a particular dataset belongs to. Moreover, the19

proposed optimal scheme is superior to the ZW scheme, which is restricted to be a convex combination of the OBS and SUBJ20

weights. Simulation studies also demonstrate that the empirical advantage of the optimal scheme over the ZW schememay21

be substantial. Second, we establish two new corollaries that shed light on the relationship between the optimal schemes22

and OBS/SUBJ schemes. For eithermean or covariance estimation, the OBS and SUBJ schemes are shown to be asymptotically23

equivalent to the optimal one when data are sufficiently non-dense or ultra-dense respectively. The new results provide24

theoretical insights for the satisfactory performance of the OBS and SUBJ schemes in the two special scenarios. Lastly,25

the approach used in this article to finding optimal weighting schemes is general and may be broadly applicable to other26

frameworks. Typically it is straightforward to find the optimal scheme as long as the L2 rate of convergence that depends on27

weights can be achieved. For example, by applying this approach, we are able to derive the optimal weighting scheme for28

the coefficient estimators of varying-coefficient models (Huang et al., 2002).29

2. Estimation30

We employ local linear smoothers as in Zhang and Wang (2016). Denote Kh(·) = K (·/h)/h for a one-dimensional kernel31

K and a bandwidth h.32

The estimator of µ, denoted by µ̂, is given by µ̂(t) = β̂0, where33

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

wi

Ni∑
j=1

{
Yij − β0 − β1(Tij − t)

}2

Khµ (Tij − t). (1)34

Here wi represents the general weight assigned to each observation for the ith subject. For normalization we require35 ∑n
i=1Niwi = 1.36

Assume Ni ≥ 2 for all i = 1, . . . , n when estimating γ . With the mean estimator µ̂, one could obtain the residuals37

Yij − µ̂(Tij) and smooth over the within-subject off-diagonal products of the residuals Rijl = {Yij − µ̂(Tij)}{Yil − µ̂(Til)} to38

achieve γ̂ , the estimator of γ , which is given by γ̂ (s, t) = β̂0, where39

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

n∑
i=1

vi

∑
1≤j̸=l≤Ni

{
Rijl − β0 − β1(Tij − s)40

− β2(Til − t)
}

2Khγ (Tij − s)Khγ (Til − t). (2)41

Similarly
∑n

i=1Ni(Ni − 1)vi = 1 for normalization.42

The OBS and SUBJ weighting schemes are two special cases. The OBS scheme allocates the sameweightwobs
i = 1/

∑n
i=1Ni43

to each observation Yij and the sameweight vobs
i = 1/

∑n
i=1Ni(Ni−1) to each Rijl, so a subject with largerNi receives a heavier44

weight. The corresponding estimators are denoted by µ̂obs and γ̂ obs respectively. The SUBJ scheme assigns different weights,45

w
subj
i = 1/(nNi) and v

subj
i = 1/{nNi(Ni − 1)}, to observations from different subjects but the same total weights 1/n to all46

subjects. The corresponding estimators are denoted by µ̂subj and γ̂ subj respectively. To conformwith Zhang andWang (2016),47

all weights and {Ni : i = 1, . . . , n} are regarded as non-random but may vary with the sample size n.48

3. Optimal weighting schemes49

For simplicity and without loss of generality we assume that the domain of the functional data is I = [0, 1]. Denote50

the L2 norm by ∥φ∥2 = [
∫

φ(t)2 dt]1/2 for any univariate function φ(·) ∈ [0, 1], and the Hilbert–Schmidt norm by51

∥Σ∥HS = [
∫∫

Σ2(s, t) ds dt]1/2 for any bivariate function Σ(·, ·) ∈ [0, 1]2.52
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