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a b s t r a c t

In the framework of nonparametric anisotropic multivariate function estimation we study
the lower bounds for the minimax risk. It is shown that the multi-index assumption leads
to new minimax lower bounds containing a logarithmic factor.
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1. Introduction

The lower bounds for the minimax risk, apart from being a challenging mathematical problem, serve as a benchmark for
the best obtainable quality of an arbitrary estimator.

Let D = [−1, 1]d. We observe a path {Yn(x), x ∈ D} satisfying the stochastic differential equation

Yn(dx) = F (x)dx +
1

√
n
W (dx), (1)

whereW is a Brownian sheet, 1/
√
n, n ∈ N, is the deviation parameter and F ∈ L2(D). The aim is to estimate the value F (t),

t ∈ [−1/2, 1/2]d, from the path {Yn(x)} in the Gaussian white noise (GWN) model (1).
Suppose that one seeks an estimator of the value F (t), of a function F : Rd

→ R, under a structural constraint that
there exist an unknown function f : Rm

→ R, m < d, and some unknown linearly independent unit vectors θk ∈ Sd−1,
k = 1, . . . ,m, such that

F (x) = f
(
θ⊤

1 x, . . . , θ⊤

m x
)
. (2)

Here Sd−1 is a unit sphere of Rd. This model assumption is called ‘‘multi-index’’ and appears, for instance, in semiparametric
estimation and dimension reduction problems (see Stone, 1985 and Hristache et al., 2001). Constraint (2) gives advantages
of dimension reduction but is more flexible than the single-index model (see, e.g., Delecroix et al., 2006, Goldenshluger
and Lepski, 2008and references therein). Moreover, the structural assumptions are very useful in the case of functional data
where the nonparametric methods provide slow convergence rate (see Chen et al., 2011).
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In what follows, we consider a problem of nonparametric estimation at a given point. The corresponding risk of some
estimator F̂ (t) of F (t) is given by

R(n)
r, t

(
F̂ , F

)
=

(
E(n)
F |F̂ (t) − F (t)|

r)1/r
, t ∈ [−1/2, 1/2]d. (3)

One aims at obtaining as great as possible lower bound ψn(F) on the minimax risk, usually called lower rate of convergence
or minimax lower bound,

inf
F̃

sup
F∈F

R(n)
r, t

(
F̃ , F

)
≳ ψn(F), n → ∞,

where F is some class of functions and infimum is over all possible estimators. The latter inequality says that, on the class F,
the estimators F̃ (t) of F (t) cannot converge to F (t) faster than ψn(F).

What this paper is really about. It was shown in the prominent work (Lepskii, 1990) on the pointwise adaptation that for
estimating at a given point, that is, under the losses determined by the pointwise seminorm (3), in the Gaussian white noise
(GWN)model there exist no rate optimal adaptive estimators over the Hölder classes. The lattermeans that the upper bound
on the risk of adaptive estimators diverges from theminimax rate of convergence (see the definition below) by a logarithmic
factor. Later, similar resultswere obtained for the density and regressionmodels (see Brownand Low, 1996 andGaïffas, 2007,
respectively). The fact about the unavoidable ‘‘payment’’ for the pointwise adaptation has got to be a somewhat of common
knowledge.

However, let us recall that the aforementioned notion of optimality originates from the classical minimax theory (see,
for instance, Ibragimov and Has’minskii, 1981). This approach is rather objective in the sense that it allows to judge the
accuracy of arbitrary estimators, but it contains two subjective ‘‘tuning’’ components: the way of measuring the accuracy
of estimation—the loss function taken to be the pointwise seminorm in this case, and the class of functions F for which the
maximal risk is considered. If

R(n)
r, t

(
F̂ ,F

)
≍ ψn(F), n → ∞,

one says that the estimator F̂ (t) of F (t) is rate optimal over the class F.
For instance, for F : Rd

→ R thewell known examples ofF are given by the isotropic Hölder classesHd(β, L),β > 0, L > 0
or,more generally, by the anisotropic Hölder classesHd(β, L),β = (β1, . . . , βd), (see Definition 1). Theminimax rate on these
classes in the standard statistical models is very well known (see, e.g. Tsybakov, 2009, Kerkyacharian et al., 2008):

ψn(β, L) = Ld/(2β+d)n−β/(2β+d), (4)

ψn(γ , L) = L1/(2γ+1)n−γ /(2γ+1), γ−1
=

d∑
k=1

β−1
k , (5)

for Hd(β, L) and Hd(β, L), respectively. In the anisotropic case (5) the dimension d is hidden in the harmonic mean γ
(see Hoffmann and Lepski, 2002, Klutchnikoff, 2005), also referred to as ‘‘exponent of global smoothness’’ (see Birgé, 1986).

Usually, the class F is determined by somemulti-parameter, say, α: F = Fα . In the previous example α = (β, L) ∈ R2
+
, or

α = (β, L) ∈ Rd+1
+ . Suppose now that one managed to construct an estimator F∗(t) of F (t) such that for any α taking values

in some sufficiently large compact set A

R(n)
r, t

(
F∗,Fα

)
≍ ψn(F), n → ∞.

Then F∗(t) is optimally rate adaptive over ∪α∈AFα . As already mentioned, in Lepskii (1990) is shown that in the case
Fα = H1(β, L) no optimally rate adaptive estimators available. In the density and regression models similar results were
obtained in Brown and Low (1996) and Gaïffas (2007), respectively.

The lack of the rate optimal adaptivitymeans that the adaptive rate for estimating in the standardmodels isworse than the
one of (4) or (5) by somemultiplicative factor, usually logarithmic. Denote F∗(t) an estimator independent of the knowledge
of β or β. Then for any β ≤ βmax, for some βmax > 0 or, respectively, β ≤ βmax, for some βmax = (β1,max, . . . , βd,max),

R(n)
r, t

(
F∗,H(β, L)

)
≲ Ld/(2β+d)

(
ln(n)
n

)β/(2β+d)

, (6)

R(n)
r, t

(
F∗,H(β, L)

)
≲ L1/(2γ+1)

(
ln(n)
n

)γ /(2γ+1)

, n → ∞. (7)

Nevertheless, the choice of F = H(β, L) or F = H(β, L) is rather subjective. Suppose that in a standard statistical model
one seeks an estimator of the value F (t) of a function F : Rd

→ R under the structural constraint (2). Then a natural question
is if the rate appearing in the lower bounds on the minimax risk for the smoothness classes of such ‘‘structured’’ functions
(see the definition below) coincides with the rates in (4) and (5)? In what follows, it will be shown that the lower bounds
contain an additional logarithmic factor.
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