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a b s t r a c t

Based on the convex least-squares estimator, we propose two different procedures for
testing convexity of a probability mass function supported on N with an unknown finite
support. The procedures are shown to be asymptotically calibrated.

© 2017 Elsevier B.V. All rights reserved.

1. The testing problem 1

Modeling count data is an important issue in statistical research, see e.g. Gómez-Déniz and Calderín-Ojeda (2011). A 2

popular parametric model for such data is the Poisson model. While non-parametric extensions are conceivable, those that 3

only assume a shape constraint of the underlying probability mass function (pmf) may offer more flexibility. Recent papers 4

on estimating a pmf under a shape constraint are Jankowski and Wellner (2009), Durot et al. (2013, 2015), Balabdaoui et al. 5

(2013), Giguelay (2016), Chee and Wang (2016). In any case, it is sensible to validate the chosen model using a goodness- 6

of-fit test. Goodness-of-fit tests to validate a model connected to the Poisson distribution are given in Karlis and Xekalaki 7

(2000), Meintanis and Nikitin (2008), Ledwina and Wyłupek (2016) and the references therein. However, to the best of our 8

knowledge, no goodness-of-fit test has been proposed to validate an assumed shape constraint for discrete data. 9

Motivated by the biological application in Durot et al. (2015),where thenumber of species is estimated assuming a convex 10

abundance distribution, we develop here a goodness-of-fit test for convexity of the underlying pmf on N. To the best of our 11

knowledge, this is the first attempt to build a convexity test for count data. Precisely, based on i.i.d. observations X1, . . . , Xn 12

from some pmf p0 on N, we test the null hypothesis H0: ‘‘p0 is convex on N’’ (i.e. p0(k + 1) − p0(k) ≥ p0(k) − p0(k − 1) 13

for all integers k ≥ 1) versus H1: ‘‘p0 is not convex’’. The test is based on the convex least-squares estimator p̂n := 14

argminp∈C1∥pn − p∥, where C1 is the set of all convex pmfs on N, ∥q∥2
=

∑
j∈N(q(j))

2 for any sequence q = {q(j), j ∈ N}, and 15

pn(j) = n−1∑n
i=11{Xi=j}, j ∈ N, is the empirical pmf. It is proved in Durot et al. (2013, Sections 2.1 to 2.3) that p̂n exists, is 16

unique, and can be implemented with an appropriate algorithm. We reject H0 if {Tn > tα,n} where Tn =
√
n∥pn − p̂n∥ and 17

tα,n is an appropriate quantile, chosen in such a way that the test has asymptotic level α. 18

In the sequel, we assume that p0 has a finite support in {0, . . . , S} with an unknown integer S > 0 and we consider two 19

different constructions of tα,n. First, we define tα,n as the (1 − α)-quantile of a random variable whose limiting distribution 20

coincides with the limiting distribution of Tn under H0. Next, we calibrate the test under a least favorable hypothesis (when 21

the true pmf is triangular). Theoretical justification requires knowledge of the limiting distribution of Tn underH0. This needs 22

some notation. For all p = {p(j), j ∈ N} and k ∈ N \ {0} we set ∆p(k) = p(k+1)−2p(k)+ p(k−1) (hence p is convex onN iff 23

∆p(k) ≥ 0 for all k) and a given k ∈ N\{0} is called a knot of p if∆p(k) > 0. For all s > 0 and u = (u(0), . . . , u(s+1)) ∈ Rs+2, 24
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we set ∥u∥2
s =

∑s+1
k=0(u(k))

2. Also, let g0 be a (S + 2) centered Gaussian vector whose dispersion matrix Γ0 has component1

(i + 1, j + 1) equal to 1{i=j}p0(i) − p0(i)p0(j) for all i, j = 0, . . . , S + 1, and ĝ0 the minimizer of ∥g − g0∥S over2

g ∈ K0 :=

{
g = (g(0), . . . , g(S + 1)) ∈ RS+2

: ∆g(k) ≥ 0 for all k ∈ {1, . . . , S}3

such that ∆p0(k) = 0
}
.4

Existence, uniqueness and characterization of ĝ0 are given in Balabdaoui et al. (2017, Theorem 3.1). The asymptotic5

distribution of Tn under H0 is given below.6

Theorem 1.1. (i) The distribution function of T̂0 := ∥̂g0 − g0∥S is continuous on (0, ∞). (ii) Under H0, Tn
d

−→ T̂0 and7

supt≥0|P(Tn ≤ t) − P (̂T0 ≤ t)| → 0, as n → ∞.8

2. Calibrating by estimating the limiting distribution9

Here, we build a random variable that weakly converges to T̂0 and can be approximated via Monte-Carlo simulations.10

Let Sn = max{X1, . . ., Xn}, and let gn be a random vector which, conditionally on (X1, . . . , Xn), is a Sn + 2 centered Gaussian11

vector whose dispersion matrix Γn has component (i + 1, j + 1) equal to 1{i=j}pn(i) − pn(i)pn(j) for all i, j = 0, . . . , Sn + 1.12

Now, let ĝn = argming∈Kn∥g − gn∥Sn , the least squares projection of gn on Kn, where Kn ‘‘approaches’’ K0 as n → ∞:13

Kn =

{
g = (g(0), . . . , g(Sn + 1)) ∈ RSn+2

: ∆g(k) ≥ 0 for all k ∈ {1, . . . , Sn}14

such that ∆̂pn(k) ≤ vn

}
15

for an appropriate positive sequence (vn)n. Choosing vn = 0 would makeKn to be the largest possible and hence ∥̂gn − gn∥Sn16

the smallest possible; this distance would be stochastically smaller than the actual limit of Tn, yielding a large probability17

of rejection. In fact, choosing vn = 0 amounts to estimate the knots of p0 by those of p̂n, which is not desirable since p̂n has18

typically more knots than p0. The conditions required on vn are given below.19

Theorem 2.1. Let gn, Kn, and ĝn be as above, and take vn > 0 such that vn = o(1) and vn ≫ n−1/2. (i) Then, ĝn uniquely exists,20

both ĝn and T̂n := ∥̂gn − gn∥Sn are measurable. (ii) Under H0, conditionally on X1, . . . , Xn we have T̂n
d

−→ T̂0 in probability as21

n → ∞.22

By (i) in Theorem 1.1, the conditional convergence T̂n
d

−→ T̂0 in probability means that23

sup
t∈R

⏐⏐P (̂Tn ≤ t|X1, . . ., Xn) − P (̂T0 ≤ t)
⏐⏐ = op(1). (2.1)24

In Balabdaoui et al. (2017, Theorem 3.3) it is shown that limn→∞P(Kn ̸= K0) = 0 for any (vn)n satisfying the conditions of25

the theorem. The intuition behind is as follows: when k is a knot of p0 and ∆̂pn(k) ≤ vn, then
√
n(∆̂pn(k)−∆p0(k)) < −

√
nϵ026

for some ϵ0 > 0 and n large enough. Weak convergence of p̂n to p0 implies that this happens with probability converging to27

zero. In case k is not a knot; i.e., ∆p0(k) = 0 such that ∆̂pn(k) > vn then
√
n∆̂pn(k) >

√
nvn → ∞, which again happens28

with decreasing probability. We now state the main result of the section, which is proven is the supplement.29

Theorem 2.2. Let T̂n as in Theorem 2.1. Let α ∈ (0, 1) and tα,n the conditional (1 − α)-quantile of T̂n given X1, . . . , Xn. Under30

H0, lim supn→∞P
(
Tn > tα,n

)
≤ α.31

Hence, the test is asymptotically calibrated. In fact, it can be shown that the asymptotic Type I error is precisely equal to α for32

appropriate range of α, i.e. limn→∞P(Tn > tα,n) = α, see the supplementary material. An approximative value of tα,n can be33

computed usingMonte-Carlo simulations as follows. Having observedX1, . . . , Xn, draw independent sequences (Z (b)
i )0≤i≤Sn+134

for b ∈ {1, . . . , B}, of i.i.d. N (0, 1) variables Z (b)
i , where B > 0 is the number of Monte-Carlo runs. For all b, compute35

g (b)
n = Γ

1/2
n (Z (b)

0 , . . . , Z (b)
Sn+1)

T and ĝ (b)
n the minimizer of ∥g (b)

n − g∥Sn over Kn using Dykstra’s algorithm, see Balabdaoui36

et al. (2017). If (sj)j is the sequence of successive knots of p̂n such that ∆̂pn(sj) > vn, then the algorithm performs iterative37

projections on the cones {g ∈ RSn+2
: ∆g(k) ≥ 0 for all k ∈ {sj + 1, . . . , sj+1 − 1}}, whose intersection is precisely Kn.38

See Dykstra (1983) for more details and a proof of convergence. Then, tα,n can be approximated by the (1 − α)-quantile of39

the empirical distribution corresponding to ∥g (b)
n − ĝ (b)

n ∥Sn , with b ∈ {1, . . . , B}.40

3. Calibrating under the least favorable hypothesis41

We consider below an alternative calibration that is easier to implement than the first one since it does not involve a42

sequence (vn). In what follows we denote by Ta the triangular pmf supported on {0, . . . , a − 1} for a given integer a ≥ 1;43

i.e., Ta(i) = 2(a − i)+[a(a + 1)]−1. Consider K̃0 the set of all vectors g = (g(0), . . . , g(S + 1)) ∈ RS+2 such that ∆g(k) ≥ 044
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