Generalizations of maximal inequalities to arbitrary selection rules

Jiantao Jiao *, Yanjun Han, Tsachy Weissman

Stanford University, United States

ARTICLE INFO

Article history:

Received 29 August 2017
Received in revised form 2 January 2018
Accepted 5 January 2018
Available online xxxx

MSC:

60E15
60G70

Keywords:

Entropy
Maximal inequality
Orlicz function
Convex duality
Generalized Holder's inequality

Abstract

We present a generalization of the maximal inequalities that upper bound the expectation of the maximum of n jointly distributed random variables. We control the expectation of a randomly selected random variable from n jointly distributed random variables, and present bounds that are at least as tight as the classical maximal inequalities, and much tighter when the distribution of selection index is near deterministic. A new family of information theoretic measures was introduced in the process, which may be of independent interest.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we consider n random variables $Z_{i}, 1 \leq i \leq n$ such that $\mathbb{E}\left[Z_{i}\right]=0$, where n is a finite positive integer. The zero mean condition can be satisfied via the operation $Z_{i}^{\prime}=Z_{i}-\mathbb{E}\left[Z_{i}\right]$ upon assuming that all Z_{i} 's are integrable. The following two maximal inequalities are well known in the literature and serve as the motivational results for this work.

Lemma 1. Let $\psi \geq 0$ be a convex function defined on the interval $[0, b)$ where $0<b \leq \infty$. Assume that $\psi(0)=0$. Set, for every $t \geq 0$,

$$
\begin{equation*}
\psi^{*}(t)=\sup _{\lambda \in(0, b)}(\lambda t-\psi(\lambda)) \tag{1}
\end{equation*}
$$

Suppose that $\ln \mathbb{E}\left[e^{\lambda z_{i}}\right] \leq \psi(\lambda)$ for all $\lambda \in[0, b), 1 \leq i \leq n$. Then,

$$
\begin{equation*}
\mathbb{E}\left[\max _{i} Z_{i}\right] \leq \psi^{*-1}(\ln n), \tag{2}
\end{equation*}
$$

where $\psi^{*-1}(y)$ is defined as

$$
\begin{equation*}
\psi^{*-1}(y)=\inf \left\{t \geq 0: \psi^{*}(t)>y\right\} \tag{3}
\end{equation*}
$$

[^0]
ARTCLE IN PRESS

To introduce the second inequality, we say a function ψ is an Orlicz function if $\psi:[0, \infty) \mapsto[0, \infty]$ is a convex function vanishing at zero and is also not identically 0 or ∞ on ($0, \infty$). We define the Luxemburg ψ norm of a random variable X as

$$
\begin{equation*}
\|X\|_{\psi}=\inf \left\{\sigma>0: \mathbb{E}\left[\psi\left(\frac{|X|}{\sigma}\right)\right] \leq 1\right\} . \tag{4}
\end{equation*}
$$

Lemma 2 (Pollard, 2005). Let ψ be an Orlicz function. Suppose $\left\|Z_{i}\right\|_{\psi} \leq \sigma, 1 \leq i \leq n$. Then,

$$
\begin{equation*}
\mathbb{E}\left[\max _{i} Z_{i}\right] \leq \sigma \cdot \psi^{-1}(n) \tag{5}
\end{equation*}
$$

where $\psi^{-1}(y)$ is defined as $\psi^{-1}(y)=\inf \{t \geq 0: \psi(t)>y\}$.
This paper concerns with the question of generalizing Lemmas 1 and 2 to arbitrary selection rules. Concretely, suppose $T \in\{1,2, \ldots, n\}$ is a random variable jointly distributed with $Z_{1}, Z_{2}, \ldots, Z_{n}$. We would like to upper bound $\mathbb{E}\left[Z_{T}\right]$, which subsumes the maximal inequality $T=\operatorname{argmax}_{i} Z_{i}$ as a special case. Naturally, since

$$
\begin{equation*}
\mathbb{E}\left[Z_{T}\right] \leq \mathbb{E}\left[\max _{i} Z_{i}\right] \tag{6}
\end{equation*}
$$

we would like to obtain bounds that are at least as strong as Lemmas 1 and 2, but dependent on the joint distribution of $T, Z_{1}, Z_{2}, \ldots, Z_{n}$. In particular, the upper bound should be zero if T is deterministic since we have already assumed that $\mathbb{E}\left[Z_{i}\right]=0$ for all $1 \leq i \leq n$.

A generalization of Lemma 1 was achieved in Jiao et al. (2017) using the Donsker-Varadhan variational representation of the relative entropy, which is a generalization of the sub-Gaussian case in Russo and Zou (0000). Denote the entropy of a discrete random variable T as

$$
\begin{equation*}
H(T)=\sum_{t} P_{T}(t) \ln \frac{1}{P_{T}(t)} \tag{7}
\end{equation*}
$$

and the mutual information $I(X ; Y)$ between X and Y as

$$
I(X ; Y)= \begin{cases}\int_{\infty} \ln \frac{d P_{X Y}}{d\left(P_{X} P_{Y}\right)} d P_{X Y} & \text { if } P_{X Y} \ll P_{X} P_{Y} \tag{8}\\ \text { otherwise }\end{cases}
$$

The following was shown in Jiao et al. (2017).
Lemma 3. Let $\psi \geq 0$ be a convex function defined on the interval $[0, b)$ where $0<b \leq \infty$. Assume that $\psi(0)=0$. Set, for every $t \geq 0$,

$$
\begin{equation*}
\psi^{*}(t)=\sup _{\lambda \in(0, b)}(\lambda t-\psi(\lambda)) \tag{9}
\end{equation*}
$$

Suppose that $\ln \mathbb{E}\left[e^{\lambda Z_{i}}\right] \leq \psi(\lambda)$ for all $\lambda \in[0, b), 1 \leq i \leq n$, and $\mathbb{E}\left[Z_{i}\right]=0,1 \leq i \leq n$. Then,

$$
\begin{align*}
\mathbb{E}\left[Z_{T}\right] & \leq \psi^{*-1}(I(T ; \mathbf{Z})) \tag{10}\\
& \leq \psi^{*-1}(H(T)) \tag{11}
\end{align*}
$$

https://daneshyari.com/en/article/7548252

Download Persian Version:
https://daneshyari.com/article/7548252

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jiantao@stanford.edu (J. Jiao), yjhan@stanford.edu (Y. Han), tsachy@stanford.edu (T. Weissman).

