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a b s t r a c t

We present a generalization of the maximal inequalities that upper bound the expectation
of the maximum of n jointly distributed random variables. We control the expectation
of a randomly selected random variable from n jointly distributed random variables, and
present bounds that are at least as tight as the classical maximal inequalities, and much
tighter when the distribution of selection index is near deterministic. A new family of in-
formation theoreticmeasureswas introduced in the process, whichmay be of independent
interest.
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1. Introduction 1

Throughout this paper, we consider n random variables Zi, 1 ≤ i ≤ n such that E[Zi] = 0, where n is a finite positive 2

integer. The zero mean condition can be satisfied via the operation Z ′

i = Zi −E[Zi] upon assuming that all Zi’s are integrable. 3

The following two maximal inequalities are well known in the literature and serve as the motivational results for this work. 4

Lemma 1. Let ψ ≥ 0 be a convex function defined on the interval [0, b)where 0 < b ≤ ∞. Assume that ψ(0) = 0. Set, for every 5

t ≥ 0, 6

ψ∗(t) = sup
λ∈(0,b)

(λt − ψ(λ)). (1) 7

Suppose that lnE[eλZi ] ≤ ψ(λ) for all λ ∈ [0, b), 1 ≤ i ≤ n. Then, 8

E[max
i

Zi] ≤ ψ∗−1(ln n), (2) 9

where ψ∗−1(y) is defined as 10

ψ∗−1(y) = inf{t ≥ 0 : ψ∗(t) > y}. (3) 11
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To introduce the second inequality, we say a functionψ is an Orlicz function ifψ : [0,∞) ↦→ [0,∞] is a convex function1

vanishing at zero and is also not identically 0 or ∞ on (0,∞). We define the Luxemburg ψ norm of a random variable X as2

∥X∥ψ = inf
{
σ > 0 : E

[
ψ

(
|X |

σ

)]
≤ 1

}
. (4)3

Lemma 2 (Pollard, 2005). Let ψ be an Orlicz function. Suppose ∥Zi∥ψ ≤ σ , 1 ≤ i ≤ n. Then,4

E[max
i

Zi] ≤ σ · ψ−1(n), (5)5

where ψ−1(y) is defined as ψ−1(y) = inf{t ≥ 0 : ψ(t) > y}.6

This paper concerns with the question of generalizing Lemmas 1 and 2 to arbitrary selection rules. Concretely, suppose7

T ∈ {1, 2, . . . , n} is a random variable jointly distributed with Z1, Z2, . . . , Zn. We would like to upper bound E[ZT ], which8

subsumes the maximal inequality T = argmaxiZi as a special case. Naturally, since9

E[ZT ] ≤ E[max
i

Zi], (6)10

we would like to obtain bounds that are at least as strong as Lemmas 1 and 2, but dependent on the joint distribution of11

T , Z1, Z2, . . . , Zn. In particular, the upper bound should be zero if T is deterministic since we have already assumed that12

E[Zi] = 0 for all 1 ≤ i ≤ n.13

A generalization of Lemma 1 was achieved in Jiao et al. (2017) using the Donsker–Varadhan variational representation14

of the relative entropy, which is a generalization of the sub-Gaussian case in Russo and Zou (0000). Denote the entropy of a15

discrete random variable T as16

H(T ) =

∑
t

PT (t) ln
1

PT (t)
, (7)17

and the mutual information I(X; Y ) between X and Y as18

I(X; Y ) =

{∫
ln

dPXY
d(PXPY )

dPXY if PXY ≪ PXPY

∞ otherwise.
(8)19

The following was shown in Jiao et al. (2017).20

Lemma 3. Let ψ ≥ 0 be a convex function defined on the interval [0, b)where 0 < b ≤ ∞. Assume that ψ(0) = 0. Set, for every21

t ≥ 0,22

ψ∗(t) = sup
λ∈(0,b)

(λt − ψ(λ)). (9)23

Suppose that lnE[eλZi ] ≤ ψ(λ) for all λ ∈ [0, b), 1 ≤ i ≤ n, and E[Zi] = 0, 1 ≤ i ≤ n. Then,

E[ZT ] ≤ ψ∗−1(I(T ; Z)) (10)

≤ ψ∗−1(H(T )) (11)

where ψ∗−1(y) is defined as24

ψ∗−1(y) = inf{t ≥ 0 : ψ∗(t) > y}. (12)25

and Z = (Z1, Z2, . . . , Zn).26

Lemma 3 is clearly stronger than Lemma 1 since I(T ; Z) ≤ H(T ) ≤ ln n. It is also interesting to observe that the soft bound27

is maximized when T follows a uniform distribution, and it is zero when T is deterministic.28

Similar attemptsweremade to generalize Lemma2 in Jiao et al. (2017). However, it was not satisfactory since that even in29

the case ofψ(x) = xp, p ≥ 1, x ≥ 0, the generalization bound obtained in Jiao et al. (2017) may be infinity when 1 ≤ p < 2,30

while Lemma 2 shows that it is universally bounded by σ · n1/p for every p ≥ 1.31

Our main contribution in this paper is the generalization of Lemma 2 to arbitrary selection rules. Our generalization32

satisfies the following properties:33

1. It is at least as strong as Lemma 2: in other words, it can be shown that the worst case joint distribution of T and Z34

would not incur an upper bound larger than σ · ψ−1(n), which is the upper bound in Lemma 2.35

2. It admits a closed form expression for the p-norm case, i.e., the case where ψ(x) = xp, p ≥ 1, x ≥ 0. In other words,36

it defines another information theoretic measure paralleling the Shannon entropy H(T ) in Lemma 3. Concretely, for37
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