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a b s t r a c t

This paper discusses the issue of constructing uniform minimum moment aberration
designs under discrepancies criteria. By considering all possible level permutations of
factors, we establish a linear relationship between power moments and average discrep-
ancy defined by a reproducing kernel for an asymmetrical or symmetrical design. We
prove that minimum moment aberration designs often have low average discrepancies.
Moreover, the average centered L2-discrepancy is expressed as a linear combination of
powermoments for a given design. An efficientmethod for constructing uniformminimum
moment aberration designs is proposed. Some asymmetrical uniform minimum moment
aberration designs obtained by our method have low centered L2-discrepancy and can be
recommended for use in practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Uniform designs spread their experimental points evenly throughout the design space under some discrepancy criterion 2

(Fang and Lin, 2003; Fang et al., 2006) so that one can explore many kinds of models by using it. The commonly used 3

discrepancies include, e.g., the centered L2-discrepancy (CD), the wrap-around L2-discrepancy (Hickernell, 1998) and the 4

discrete discrepancy (Hickernell and Liu, 2002). A design is said to be uniform under some discrepancy criterion if it 5

minimizes the discrepancy among all designs in a design space. 6

Constructing uniform designs is a complex and computationally intractable task, even for moderate number of runs, 7

factors and levels (Fang et al., 2002). Many construction methods of uniform designs have been proposed, e.g., good lattice 8

method, Latin square method and expanding orthogonal design method (Fang et al., 2006; Yang et al., 2014; Jiang and Ai, 9

2017). Recently, considerable studies have been done for constructing uniform designs by using the method of permutating 10

levels of factorial designs. Tang et al. (2012) established a relationship between average CD and generalized wordlength 11

pattern for three-level regular designs. To generalize their ideas, Tang and Xu (2013) investigated the relationship between 12

average CD and generalized wordlength pattern for designs with arbitrary number of levels. Furthermore, Zhou and Xu 13

(2014) obtained a unified expression between generalized wordlength pattern and any average discrepancy defined by a 14

reproducing kernel. Generalized minimum aberration designs tend to agree with uniform designs. It is, however, often a 15

hard task to find a generalized minimum aberration design. 16

Minimum moment aberration (MMA) criterion is developed for nonregular designs and supersaturated designs (Xu, 17

2003). It is also a good surrogate with computational advantages for the generalized minimum aberration criterion. Instead 18

of studying the relationship between factors (i.e., columns), MMA is to sequentially minimize the power moments of the 19
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number of coincidence among runs (i.e., rows). The MMA criterion is statistically reasonable, computationally cheap, and1

convenient for theoretical development.2

By considering all possible level permutations of factors, we establish a linear relationship between average discrepancy3

defined by a reproducing kernel and power moments for an asymmetrical or symmetrical design. We prove that MMA4

designs often have low average discrepancies. An MMA design with minimum discrepancy is called uniform MMA design.5

Moreover, the average centered L2-discrepancy is expressed as a linear combination of power moments for a given design.6

An efficient method for constructing uniform MMA designs is proposed and some uniform MMA designs are constructed.7

The remainder of this paper is organized as follows. Some notations and preliminaries are provided in Section 2. Section 38

presents a linear relationship between average discrepancy and powermoments for an asymmetrical or symmetrical design.9

The method of constructing uniform MMA designs is also given in Section 3. Section 4 gives some concluding remarks. All10

proofs are deferred to Appendix A.11

2. Notations and preliminaries12

An (N, sn11 sn22 . . . snv
v )-design D is denoted by an array of size N × n, where N and n =

∑v

i=1ni are respectively the total13

number of points (rows) and factors (columns), in which the first n1 columns have symbols from Zs1 , the next n2 columns14

have symbols from Zs2 and so on, where Zs = {0, 1, . . . , s − 1}. When v = 1, the design D is denoted by (N, sn) and is said15

to be symmetrical, otherwise is called asymmetrical or mixed-level. For simplicity of presentation, we only consider designs16

with two different levels in this paper, say (N, sn11 sn22 )-design, where n = n1 + n2.17

For any symmetrical (N, sn)-design D = [xik]N×n, let δij(D) =
∑n

k=1δ(xik, xjk) be the coincidence number of the ith and jth18

rows of D, where δ(y, z) is the Kronecker delta function, equals to 1 if y = z and 0 otherwise. Note that n− δij(D) is known as19

the Hamming distance between the ith and jth rows of D in algebraic coding theory. For an asymmetrical (N, sn11 sn22 )-design20

D, we partition it into two symmetrical subdesigns by columns, i.e., D = (D(1)
...D(2)), where D(r)

= (N, snrr ), r = 1, 2. Let δ(r)ij be21

the coincidence number of the ith and jth rows for D(r), and δ∗

ij (D) = ω1δ
(1)
ij + ω2δ

(2)
ij , where ω1 > 0 and ω2 > 0 are weights,22

δ∗

ij (D) is called the weighted coincidence number of the ith and jth rows for D.23

For a positive integer t , we define the tth power moment of an asymmetrical design D to be24

K ∗

t (D) = [N(N − 1)/2]−1
∑

1≤i<j≤N

[δ∗

ij (D)]
t . (1)25

TheMMA criterion is to sequentiallyminimize the powermoments K ∗
t (D), t = 1, 2, . . . , n. For two (N, sn11 sn22 )-designsD1 and26

D2, D1 is said to have less moment aberration than D2 if there exists a t , such that K ∗
t (D1) < K ∗

t (D2) and K ∗

i (D1) = K ∗

i (D2) for27

i = 1, 2, . . . , t − 1. D1 is said to have MMA if there is no other design with less moment aberration than D1. For s1 = s2 = s,28

Eq. (1) can be expressed as Kt (D) = [N(N − 1)/2]−1∑
1≤i<j≤N [δij(D)]t .29

Let X be an experimental domain. A reproducing kernel K(x, y) defined on X 2
= X × X satisfies two properties:30

(i) K(x, y) = K(y, x) for all x, y ∈ X , and (ii)
∑N

i,j=1ciK(xi, yj)cj ≥ 0 for all xi, yj ∈ X and ci, cj ∈ R. For an N-point31

design D = {x1, . . . , xN} over X , the L2-type discrepancy for a given K(x, y) is defined as (see Hickernell, 1998)32

Disc(D,K) =

∫
X 2

K(x, y)dFu(x)dFu(y) −
2
N

N∑
i=1

∫
X

K(xi, y)dFu(y) +
1
N2

N∑
i,j=1

K(xi, xj), (2)33

where Fu(·) is the uniform distribution in the experimental domain X . Different kernel functions K(·, ·) induce different34

discrepancies. Commonly used reproducing kernels for discrepancies in the literature are defined on X = [0, 1]n and have35

a multiplicative form K(x, y) =
∏n

k=1f (xk, yk), where f (·, ·) satisfies36

f (x, y) ≥ 0 and f (x, x) + f (y, y) > f (x, y) + f (y, x), (3)37

for any x ̸= y, x, y ∈ [0, 1]. Then the corresponding discrepancy in Eq. (2) can be expressed by38

Disc(D,K) = K1 −
2
N

N∑
i=1

n∏
k=1

f1(xik) +
1
N2

N∑
i,j=1

n∏
k=1

f (xik, xjk), (4)39

where f1(x) =
∫ 1
0 f (x, y)dy and K1 =

∫
X 2 K(x, y)dFu(x)dFu(y) which is a constant.40

Formultilevel designs, different level permutationsmay lead to different geometrical structures and statistical properties.41

And one may improve design properties by permuting levels of some factors. For an (N, sn11 sn22 )-design D, let Gsk be the skth42

permutation group, k = 1, 2, and PD(π1, π2, . . . , πn) be a design obtained by permuting levels in the lth column of D by πl,43

where πl ∈ Gs1 , for l = 1, . . . , n1 and πl ∈ Gs2 , for l = n1 + 1, . . . , n. The set of all designs obtained via level permutations44

of D is denoted by P(D).45

Note that there are total (s1!)n1 (s2!)n2 designs in the set P(D). All designs in P(D) are combinatorially isomorphic to each46

other and share the same power moments, but may have different Disc(D,K) values. We can compute Disc(D,K) value for47
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