
Statistics and Probability Letters 137 (2018) 84–90

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Lower bounds for the rate of convergence for continuous-time
inhomogeneous Markov chains with a finite state space
A.I. Zeifman a,b,c,*, V.Yu. Korolev d,b,e, Ya.A. Satin a, K.M. Kiseleva f

a Vologda State University, Russian Federation
b Institute of Informatics Problems, Federal Research Center ‘‘Informatics and Control’’, Russian Academy of Sciences, Russian Federation
c Vologda Research Center, Russian Academy of Sciences, Russian Federation
d Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
e Hangzhou Dianzi University, China
f Peoples Friendship University of Russia (RUDN University), Vologda State University, Russian Federation

a r t i c l e i n f o

Article history:
Received 26 March 2017
Received in revised form 6 December 2017
Accepted 3 January 2018
Available online 31 January 2018

MSC:
60J271
60J22
60J28

Keywords:
Continuous-time Markov chains
Inhomogeneous Markov chains
Ergodicity bounds
Special norms

a b s t r a c t

An approach is proposed to the construction of general lower bounds for the rate of
convergence of probability characteristics of continuous-time inhomogeneous Markov
chains with a finite state space in terms of special ‘‘weighted’’ norms related to total
variation. We study the sharpness of these bounds for finite birth–death–catastrophes
process and for a Markov chain with large output intensity from a state.
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1. Introduction

As is known, the problem of construction of sharp bounds for the rate of convergence of characteristics of Markov chains
to their limiting versions is very important. First of all, usually, it is easier to calculate the limit characteristics of a process
than to find the exact distribution of state probabilities. Therefore, it is very important to have a possibility to use the limit
characteristics as asymptotic approximations for the exact distribution. So, one should have sharp bounds for the rate of
convergence in order to determine the time beginning with which this approximation becomes reasonable and accurate
enough.

There are many papers dealing with upper bounds for the rate of convergence, see, for instance, Van Doorn et al. (2010),
Kartashov (1985) and Mitrophanov (2003, 2004). Moreover, there are a number of different approaches to obtaining upper
bounds for the convergence time of Markov chains in different contexts, including the ‘‘cut-off phenomenon’’, Markov chain
Monte Carlo algorithms, etc., see, for instance Diaconis and Saloff-Coste (1996, 2006), Van Doorn (2015) and the references
therein. Some lower bounds formixing times in the homogeneous discrete-time case have been discussed in Levin and Peres
(2017).
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Usually, either the limiting mode is determined (Chakravarthy, 2017), or, on the contrary, the state probabilities are
determined as functions of time t and initial conditions (Di Crescenzo et al., 2016).

Let the process be homogeneous and ergodic, and let all the eigenvalues of the intensity matrix, say sk, k = 0, . . . ,N ,
be different, where s0 = 0 and ResN ≤ ResN−1 ≤ Res1 < 0. For instance, as it is well known, all the eigenvalues of the
intensitymatrix for a birth–death process are real and different. Then any solution of the corresponding forward Kolmogorov
system can be written as

∑
ke

sktck, where ck are the corresponding eigenvectors. Hence, the maximum and minimum rate
of convergence are bounded by C1esN t and C1es1t respectively. However, even in this case the construction of estimates for
the spectrum is a rather difficult problem. In Zeifman and Korolev (2015) we presented an approach for finding sharp upper
bounds in natural metrics via essential positivity of reduced intensity matrix of a Markov chain. These bounds are sharp for
nonnegative difference of initial conditions of two probability distributions of Markov chain. However, in a general situation
the assumption of the nonnegativity of this difference does not hold and the real lower bound of the rate of convergence
can be essentially smaller. At the same time, lower bounds for the convergence rate are very important, because they give
an opportunity to determine the time until which the accurate approximation of transient probability characteristics by the
limiting probability characteristics is impossible.

As far as we know, these bounds were studied previously only in the papers (Zeifman, 1995a; Granovsky and Zeifman,
2000, 2004, 2005; Zeifman et al., 2013) for birth–death processes via the notion of logarithmic norm of an operator and the
corresponding estimated. In this paper we deal with the weak ergodicity of (as a rule, inhomogeneous) continuous-time
Markov chains with a general structure of the infinitesimal matrix and formulate an algorithm for the construction of lower
bounds for the rate of convergence in the special weighted norms related to total variation.

Our general approach is closely connected with the notion of the logarithmic norm and the corresponding bounds for the
Cauchy matrix (Zeifman, 1985; 1995a; 1995b; Granovsky and Zeifman, 1997, 2004; Zeifman et al., 2006, 2013, 2014), and
allows to obtain general upper and lower bounds for the rate of convergence for a countable state space and general initial
conditions. On the other hand, if the state space of the chain is finite, then the desired bounds can be obtained in a simple
way without this special technique.

Section 2 contains preliminary material on the logarithmic norm and the corresponding lower bound on the rate of
convergence for a linear differential system. The general result is presented in Section 3. In Section 4 some important classes
of continuous-time Markov chains are considered for which it is possible to obtain exact lower convergence rate estimates.

2. Logarithmic norm and related bounds

The concept of the logarithmic norm of a square matrix was developed independently by Dahlquist (1958) and Lozinskiǐ
(1958) as a tool to derive error bounds in the numerical integration of initial-value problems for a system of ordinary
differential equations (see also the survey papers Ström, 1975 and Söderlind, 2006). The logarithmic norm for an operator
function and the corresponding bounds for solutions of differential equation in Banach space has been developed by Dalecki
and Krein (1974). One can find detailed discussion in Van Doorn et al. (2010), Granovsky and Zeifman (2004) and Zeifman
(1995b).

Let G(t) be a bounded for almost all t ≥ 0 operator function on a Banach space B endowed with the corresponding norm
∥ · ∥. Then

γ (G(t))B = lim
h→+0

∥I + hG(t)∥ − 1
h

(1)

is called the logarithmic norm of G(t).
On the other hand, if we consider the Cauchy operator V (t, s) of the differential equation dx

dt = G(t)x, i.e., x(t) = V (t, s)x(s)
for any s, t , then

γ (G(t))B = lim
h→+0

∥ V (t + h, t) ∥ −1
h

, t ≥ 0. (2)

One can prove (see the above references) that both limits (1) and (2) exist and coincide. Moreover, if B = l1, then
G(t) = (gij(t))∞i,j=0 and

γ (G(t)) = sup
j
(gjj(t) +

∑
i̸=j

| gij(t) |).

The corresponding inequality ∥V (t, s)∥ ≤ exp
{∫ t

s γ (G (τ )) dτ
}
, was used in our previous papers for the construction

of upper bounds for the rate of convergence of continuous-time Markov chains.
Here we are interested in a lower bound. We have

∥V (τ + h, s)∥−∥V (τ , s)∥=∥V (τ + h, s)∥−
V−1 (τ + h, τ ) V (τ + h, s)


≥ ∥V (τ + h, s)∥−

V−1 (τ + h, τ )
 ∥V (τ + h, s)∥

= ∥V (τ + h, s)∥
(
1 −

V−1 (τ + h, τ )
)

.
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