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a b s t r a c t

In this note, we establish the Bismut formula for stochastic heat equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂t
u(t, x) = ∆u(t, x) + ẆH (t, x), t ≥ 0, x ∈ [0, 1],

∂

∂x
u(t, x)|x=0 =

∂

∂x
u(t, x)|x=1 = 0, t ≥ 0,

u(0, x) = f (x), x ∈ [0, 1],

where f (x) ∈ H := L2([0, 1]) and WH is the fractional noise with Hurst index H ∈ ( 12 , 1).
As an application, we also introduce the Harnack inequality.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Since the work of Bismut (1984), the Bismut formula and some related questions for stochastic partial differential 2

equations (SPDEs) have become interesting research aspects in probability. For examples, see Wang and Xu (2012) and 3

Guillin and Wang (2012) for SPDEs via a coupling technique; Dong and Xie (2010) for semi-SPDEs by a simple martingale 4

approach; Bao et al. (2013) and Zhang (2010b) for functional SPDEs using Malliavin calculus method. For more literatures, 5

we refer to Wang (2013), Zhang (2010a, 2013) and the reference. 6

On the other hand, in recent years, there has been considerable interest in studying fractional Brownian motion due 7

to its some compact properties such as long/short range dependence, self-similarity, stationary increments and Hölder’s 8

continuity, and also due to its applications in various scientific areas including telecommunications, turbulence, image 9

processing and finance. It is a suitable generalization of standard Brownian motion. Some surveys and complete literatures 10

could be found in Biagini et al. (2008), Hu (2005),Mishura (2008), Nourdin (2012), Nualart (2006) and Tudor (2013). However, 11

to our best knowledge, there has been little systematic investigation on Bismut formula for SPDEs driven by fractional noise. 12

Themain reason for this, in our opinion, is the complexity of dependence structures of solutions to SPDEs. But, for stochastic 13

differential equations driven by fractional Brownian motion. Fan (2013, 2017) studied the related Bismut formulas and 14

applications. 15
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Motivated by these results, in this short note we consider the Bismut formula associated with the following stochastic1

heat equation with Neumann boundary condition:2 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
u(t, x) = ∆u(t, x) + ẆH (t, x), t ≥ 0, x ∈ [0, 1],

∂

∂x
u(t, x)|x=0 =

∂

∂x
u(t, x)|x=1 = 0, t ≥ 0,

u(0, x) = f (x), x ∈ [0, 1],

(1.1)3

where f (x) ∈ H := L2([0, 1]) and WH is the fractional noise with Hurst index H > 1
2 . Clearly, the solution of the above4

equation depends with the initial value f . So, we write u(t, x) = u(t, f , x) and u(t, f ) = (t, f , ·) for all t ≥ 0. Let Bb(H) denote5

the space of all bounded measurable functions on H and let the operators Pt , t > 0 be defined by6

PtG(f ) = E[G(u(t, f ))]7

for all G ∈ Bb(H). Our objects are to establish the Bismut formula and Harnack inequality for Pt , t > 0 under some suitable8

regularity conditions on f .9

The rest of the paper is organized as follows. In Section 2, we recall some basic results about the fractional noise WH . In10

Section 3, we prove the main result.11

2. Preliminaries12

In this section, we briefly recall the definition of the stochastic integration with respect to WH . For more details,13

see Biagini et al. (2008), Mishura (2008), Nualart (2006) and the reference.14

A centered Gaussian process WH
= {WH (t, A), t ∈ [0, T ], A ∈ B([0, 1])} defined on a complete probability spaces15

(Ω,F, (Ft ),P) is called a fractional noise if WH (0, A) = 0 for all A ∈ B([0, 1]) and its covariance function admits the16

representation17

E(WH (t, A)WH (s, B)) =
1
2
(t2H + s2H − |t − s|2H )λ(A ∩ B)18

for all s, t ∈ [0, T ] and A, B ∈ B([0, 1]), where λ is the Lebesgue measure. Throughout this paper we assume that 1
2 < H < 119

and αH = H(2H − 1).20

Let E be the set of step functions on [0, T ] × [0, 1] and letH be the Hilbert space defined as the closure of E with respect21

to the scalar product22

⟨1[0,t]×A, 1[0,s]×B⟩H = E(WH (t, A)WH (s, B))23

for all s, t ∈ [0, T ] and A, B ∈ B([0, 1]). The linear mapping24

E ∋ ϕ ↦→ WH (ϕ) :=

∫ T

0

∫ 1

0
ϕ(t, x)WH (dt, dx)25

defined by 1[0,t]×A ↦→ WH (t, A) can be extended as an isometry between H and the Gaussian spaces associated with WH .26

This isometry is called the Wiener integral with respect toWH , denoted by27

WH (ϕ) =

∫ T

0

∫ 1

0
ϕ(s, y)WH (ds, dy)28

for ϕ ∈ H.29

Consider the kernel function

KH (t, s) = cH (t − s)H−
1
2 + cH (

1
2

− H)
∫ t

s
(u − s)H−

3
2

(
1 −

( s
u

) 1
2 −H

)
du

= cH (H −
1
2
)s

1
2 −H

∫ t

s
(u − s)H−

3
2 uH−

1
2 du

with t > s > 0, where cH =

(
2HΓ ( 32 −H)

Γ (H+
1
2 )Γ (2−2H)

) 1
2

, and define the linear operator K ∗

H from E to L2([0, T ]) as follows30

(K ∗

Hϕ)(s, x) = KH (T , s)ϕ(s, x) +

∫ T

s
(ϕ(r, x) − ϕ(s, x))

∂KH

∂r
(r, s)dr.31

Then, we have32

(K ∗

H1[0,t]×A)(s, x) = KH (t, s)1[0,t]×A33
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