
Statistics and Probability Letters 137 (2018) 224–228

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On the asymptotic variance of reversible Markov chain
without cycles
Chi-Hao Wu a, Ting-Li Chen b,*
a Institute of Applied Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan
b Institute of Statical Sciences, Academia Sinica, Taipei 11529, Taiwan

a r t i c l e i n f o

Article history:
Received 18 October 2017
Received in revised form 16 January 2018
Accepted 19 January 2018
Available online 3 February 2018

Keywords:
Markov chain Monte Carlo
Rate of convergence
Reversibility
Asymptotic variance

a b s t r a c t

Markov chainMonte Carlo(MCMC) is a popular approach to sample from high dimensional
distributions, and the asymptotic variance is a commonly used criterion to evaluate the
performance. While most popular MCMC algorithms are reversible, there is a growing
literature on the development and analyses of nonreversible MCMC. Chen and Hwang
(2013) showed that a reversible MCMC can be improved by adding an antisymmetric
perturbation. They also raised a conjecture that it cannot be improved if there is no cycle in
the corresponding graph. In this paper, we present a rigorous proof of this conjecture. The
proof is based on the fact that the transition matrix with an acyclic structure will produce
minimum commute time between vertices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Markov chainMonte Carlo (MCMC) is a popular way to sample from high dimensional distributionswith awide variety of
applications. For example, Diaconis (2009) provided several interesting examples including applications in cryptography and
physics. Among the various applications of MCMC, one of the main purpose is to approximate the expectation of a specific
function.

Let I be a fixed index set of the finite state space, and π be a fixed probability measure on I. The expectation of a real-
valued function f with respect to π is denoted by π (f ) =

∑
i∈I f (i)π (i). When the state space is extremely large, it is usually

difficult to compute the expectation directly. In this case, we can construct a Markov chain with invariant distribution π .
Then the empirical distribution of the samples X0, X1, . . . c, Xn, . . . c converges toπ . Thereforewe can approximateπ (f ) with
the time average 1

n

∑n−1
k=0 f (Xk).

Whenwe useMCMC algorithmwith the transitionmatrix P to approximate the expectation of a function f , its asymptotic
variance ν(f , P, π )

ν(f , P, π ) = lim
n→∞

Eµ

[1
n

n−1∑
k=0

f (Xk) − π (f )
]2

,

where µ is an initial distribution, is a natural way to evaluate its performance. Note that the asymptotic variance is
independent to the initial distribution (Iosifescu, 1980). Many researchers have studied how to optimize the performance
of an MCMC algorithm based on this criterion. For examples, Peskun (1973) showed that the transition matrix with larger
values in off-diagonal entries has a smaller asymptotic variance. Frigessi et al. (1992) derived the optimal reversible transition
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matrix under theworst-case scenario, while Chen et al. (2012) obtained the optimal transitionmatrix under the average case
scenario. Wu and Chu (2015) proposed a global optimization technique in constructing the optimal transition matrix.

A necessary condition for the convergence of MCMC is that π is invariant under the transition P . However, the
invariance is usually difficult to check when the state space is extremely large. The reversible condition, πipi,j = πjpj,i,
is a sufficient condition to guarantee the invariance, and most of the popular MCMC algorithms such as the Metropolis–
Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) and the Gibbs sampler (Geman and Geman, 1984) make use of
reversibility. Though the reversible condition makes the construction of a transition matrix easier, researchers have shown
that reversible chains may not be as efficient as the non-reversible ones (Diaconis et al., 2000; Mira and Geyer, 2000; Hwang
et al., 1993, 2005). Recently, there is an increasing number of works on non-reversible MCMC (Chen et al., 2012; Chen and
Hwang, 2013; Bierkens, 2016; Bierkens and Roberts, 2017; Poncet, 2017).

Since reversible transition matrices are found to be less efficient, two interesting questions arise naturally. What kinds of
reversible transition matrix can be improved? How can we improve these reversible transition matrices? An earlier result
can be found in Peskun (1973), and Chen and Hwang (2013) showed that the chain can be uniformly better by adding an
antisymmetric perturbation when the corresponding graph has cycles. They also proposed a conjecture that if the graph
corresponding to the reversible transition matrix does not have any cycle, there does not exist a Markov chain that is
uniformly better.

In this paper, we give a proof to the conjecture. It starts with some preliminaries listed in Section 2, and the main result
is presented in Section 3. Finally, the conclusion is summarized in Section 4.

2. Preliminaries

In this paper, we only consider irreducible Markov chain. We start with introducing some notations and terminologies
that will be used throughout the text.

A reversible Markov chain with a transition matrix P has a corresponding undirected graph G = (V , E), where V is its
state space and E is the set of its edges. For any pair of states i and j, pi,j > 0 if and only if (i, j) ∈ E.

A cycle in a graph G = (V , E) is a path which starts and ends at the same vertex without any other repeated vertices along
the path. When the graph G = (V , E) is undirected, a cycle must contain at least 3 different vertices. If a graph has no cycle,
we say it is acyclic.

An undirected acyclic graph G = (V , E) has a tree structure. We say a vertex i is a leaf if there is only one edge (i, j) in E
that directly connects i with another vertex j.

Definition 1. For real-valued functions f and g on I, their inner product with respect to a probability distribution π is
defined as

⟨f , g⟩π =

∑
i∈I

f (i)g(i)π (i).

Lemma 1. For any real-valued function f

ν(f , P, π ) = 2⟨
[
(I − P + Π )−1

− Π
]
{f − π (f )}, f − π (f )⟩π − ⟨f − π (f ), f − π (f )⟩π

where Π is a matrix whose rows all equal π .

Proof. See Theorem 4.8 in Iosifescu (1980). □

When we consider only real-valued function in N = {f : π (f ) = 0}, the formula will be simplified into ν(f , P, π ) =

2⟨
[
(I − P + Π )−1

− Π
]
f , f ⟩π − ⟨f , f ⟩π . (I − P + Π )−1

− Π is the so called fundamental matrix, and we denote it as Z . Since
⟨f , f ⟩π is independent to the transitionmatrix, theminimization of the asymptotic variance is equivalent to theminimization
of ⟨Zf , f ⟩π .

The first hitting time and the first return time are defined as

Ti = inf{t ≥ 0 : Xt = i}

and

T+

i = inf{t ≥ 1 : Xt = i}.

In the following, we list some useful formulas that will be used in our proof.

Lemma 2.

zij = πjEπTj − πjEiTj.

Proof. See Lemma 11 and Lemma 12 in Chapter 2 of Aldous and Fill (2002). □
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