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a b s t r a c t

Spherical distributions arise quite naturally as multivariate versions of univariate (even)
densities and prove useful in several applications. Likewise their univariate counterparts,
they may not always meet the kurtosis requirements of empirical evidence. This paper
devises a methodological approach which duly reshapes spherical distributions to match
kurtosis requirements to due extent. This approach is tailored to the family of power-raised
hyperbolic secant laws and hinges on Gram–Charlier-like expansions via second-degree
orthogonal polynomials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There is ample evidence that in several fields of economic interest empirical distributions are heavy tailed. Indeed, the
occurrence of excess kurtosis is well acknowledged in financial literature (see for example Szego, 2004 and the reference
quoted therein). Tomeet possibly severe kurtosis requirements one strand of research refereed towell-behaveddistributions
other than Gaussian (Mills and Markellos, 2008; Rachev et al., 2010). A second andmore recent stream (Zoia, 2010; Faliva et
al., 2016) devised families of distributions in the form of Gram–Charlier-like expansions (GCL). This paper develops further
this second approach bymoving from the univariate to themultivariate case on a spherical distribution argument (Cambanis
et al., 1981). Gram–Charlier-like expansions of spherical hyperbolic secant, logistic and Gaussian laws are provided via
properly designed orthogonal polynomials. A novel intriguing relationship between theMellin transformand the generalized
hypergeometric function clears the way to obtain closed-form expressions for the moments and parameters of GCL in terms
of classical special functions.

2. Spherical distributions and their moments

The class of spherical distributions corresponds to the class of rotationally symmetric distributions (see e.g., Cambanis
et al., 1981; Fang and Zhang, 1990; Gomez et al., 2003). Should an n-dimensional random vector x have a spherical
representation, then the following would apply

x = RU (2.1)

where R = (x′x)1/2 is a positive random variable, known as generating variate, independent of U , which is uniformly
distributed on the unit hypersphere. The density of x, g̃n(x) hereafter, can be specified as

g̃n(x) = k(x′x)(1−n)/2fR((x′x)1/2), k = 2−1(π )−n/2Γ (n/2), (2.2)
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where Γ (.) is the Euler gamma function and fR is the density of R, which can be written as

fR (r) = 2M(n)−1rn−1g
(
r2
)
, n > 0. (2.3)

Here g(.) is a non-negative Lebesgue measurable function, called density generator, whose Mellin transform

M(n) = 2
∫

∞

0
rn−1g(r2)dr (2.4)

is finite. Simple computations prove that the jth moment, mj, of the generating variate R, which according to (2.2) affects
the shape of the spherical variable, can be expressed as follows (2.5)

mj =

∫
∞

0
r jfR (r) dr = M (n + j) /M (n) j = 1. (2.5)

According to Mardia (1970), the expression K (n) = [(X − µ)′Σ−1(X − µ)]2, which can be used to measure the kurtosis
of a n-variate random vector X with µ as vector mean and Σ variance–covariance matrix, in a spherical context (µ = 0
and Σ = n−1E(R2)In ), becomes n2E(R4)(E(R2))−2 (see e.g. Gomez et al., p. 349, Th 4. (2003) and Zografos, (2008)) and,
accordingly, in light of (2.5) and (2.4) can be written as

K (n) = n2m4m−2
2 = n2M (n + 4)M (n)M(n + 2)−2. (2.6)

This expression is particularly informative as it directly links this index to themoments of themodular variable,whichwill
play an important role in the following analysis. Given this premise, let us move to specify a spherical distribution starting
from a given univariate symmetric density, which in our case will be a member of the Power-raised Hyperbolic Secant (PHS)
family. The PHS’s are bell-shaped distributions, which originate from the hyperbolic secant law raised to a positive power
λ (Faliva and Zoia, 2017). In standard form, a PHS density is specified as follows

fλ(x) = b(sech(ax))λ, λ > 0, a = 2−1/2ψ (1)(λ/2)(1/2), b = aB−1 (
λ/2, 2−1

)
(2.7)

with ψ (1)(.) and B(.,.) denoting the trigamma and beta function, respectively (see, e.g., Davis, 1965). Noteworthy PHS
distributions are the hyperbolic secant, logistic and Gaussian laws, corresponding to λ = 1, λ = 2 and λ→∞, respectively.
The kurtosis K (λ) of a PHS density is given by

K (λ) = 3 + 2−1 (ψ (3)(λ/2)
) (
ψ (1)(λ/2)

)−2
(2.8)

where ψ (3)(.) is the pentagamma function. K (λ) tends to six as λ→ 0, and to 3 as λ → ∞.
Spherical distributions corresponding to PHS densities, SPHS hereafter, originate from density generator of the form

gλ(y) =
(
sech

(
ay1/2

))λ
, a > 0, λ > 0, y > 0. (2.9)

In this connection we have the following

Theorem 2.1. The density of an n-dimensional SPHS distribution is given by

g̃n,λ(x) =
1
2
an

Γ (n/2)
(π )n/2Mλ(n)

(
sech

(
a(x′x)1/2

))λ
, λ > 0 (2.10)

where Mλ(n) is the Mellin transform of (sech υ)λ with υ = ar and r = (x′x)1/2.
The moment mj(n,λ) of jth order of its generating variate and the kurtosis are given by

mj(n,λ) = a−jMλ(n + j)(Mλ(n))−1 (2.11)

Kλ(n) = n2Mλ(n + 4)Mλ(n)(Mλ(n + 2))−2. (2.12)

Proof. Expression (2.10) ensues from (2.2) and (2.3) by specifying the density generator as in (2.9) and making use
of the Mellin transform and its properties (see, e.g., Zayed, Ch. 10, 1996). Expressions (2.11) and (2.12) follow from
(2.6) and (2.7). □

Noteworthy expressions for themoments of the generating variate can be obtained bymoving from theMellin transform
to the generalized hypergeometric function. In this connection, let us first establish the following

Lemma 2.2. The following functional relation holds

(aλ)−h2λ+1(h − 1)!h+1F h(λ,
[
λ

2

]
h
;

[
λ

2
+ 1

]
h
; −1) = Mλ(h) (2.13)

where h+1F h(, ; ; ) is the generalized hypergeometric function evaluated at z = −1 with h + 1 numerator parameters and h
denominator parameters. Here λ is a scalar, whereas

[
λ
2

]
h and

[
λ
2 + 1

]
h are vectors whose h components are all equal to λ/2 and

λ/2 + 1, respectively.
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