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a b s t r a c t

We study optimal allocation of clusters for a fixed number of periods in cohort stepped
wedge cluster randomized trials. The optimal design turns more clusters into treatment
during the second and final periods, and depends on values of correlation parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Cluster randomized trials are designed to randomize intact clusters of individuals to treated conditions, with measure- 2

ments taken on members of the clusters (Murray, 1998; Turner et al., 2017a, b). Common reasons for conducting such 3

trials include minimizing contamination and logistical convenience (Donner and Klar, 2000). Stepped wedge (SW) cluster 4

randomized trials are a class of unidirectional crossover designs that have received increasing attention over the past decade 5

(Mdege et al., 2011). Under such designs, each cluster starts from the control condition and switches to treatment from some 6

period onwards, until all clusters are treated.While standard SWdesigns dictate that an equal number of clusters be switched 7

to treatment at each period, optimal cross-sectional stepped wedge designs have been shown to depend on the intraclass 8

correlation (Lawrie et al., 2015). However, the previous result is limited to theHussey andHughesmodel (Hussey andHughes, 9

2007) with a single random cluster effect and does not consider cohort designs with additional correlation parameters. 10

Recent reviews of stepped wedge cluster randomized trials indicate that cohort designs are common in practice (Barker 11

et al., 2016; Martin et al., 2016), so it is important to understand the optimal allocation of clusters in cohort SW designs in 12

order tomaximize efficiency. Girling andHemming (2016) considered optimal cohort SWdesigns, but they discussed a larger 13

class of designs that includes hybrid designs having both parallel and stepped wedge components. Since there are occasions 14

where the steppedwedge design is of interest to encourage cluster participation or due to ethical reasons, we focus solely on 15

the stepped wedge design and obtain its optimal form for cohort studies, extending the previous result (Lawrie et al., 2015). 16

The conditions where the current results differ from the previous results are also discussed. 17
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2. Cohort stepped wedge designs1

2.1. Characterizing the class of designs2

We focus on complete cohort stepped wedge designs with T periods, where I clusters are allocated to T − 1 distinct3

treatment sequences. We assume a closed cohort of N individuals are identified in each cluster and that measurements are4

taken for each individual during each period. Denote Xij as the treatment indicator that equals 1 if cluster i receives treatment5

in period j, and zero otherwise. Following Lawrie et al. (2015), the class of stepped wedge designs are characterized by the6

following conditions: (i) the number of periods is at least 3 (T ≥ 3); (ii) each cluster starts from the control condition7

and ends in the treated condition (Xi1 = 0 and XiT = 1 for all i = 1, . . . , I); (iii) each cluster switches from control to8

treatment exactly once, and the period at which the switch occurs is random. We write the treatment sequence for cluster9

i as X ′

i = (Xi1, . . . , XiT ), which contains t ones preceded by T − t zeros for some t ∈ {1, . . . , T − 1}. Clearly, there are at10

most T − 1 distinct treatment sequences to choose from, which are defined by the step, or period, when a cluster or group11

of clusters switch to the treated condition. The standard SW design assigns I/(T − 1) clusters to each possible treatment12

sequence, however, this design is not the optimal design under the Hussey and Hughes model except when T = 3 (Lawrie13

et al., 2015). We show below that the standard SW design is also not necessarily efficient for cohort stepped wedge cluster14

randomized trials.15

2.2. The statistical model16

We consider the following linear mixed model used for cohort stepped wedge designs, as discussed in Girling and17

Hemming (2016) and Hooper et al. (2016):18

Yijk = βj + δXij + ci + πij + sik + ϵijk, (1)19

where Yijk is the response of individual k (k = 1, . . . ,N) from cluster i (i = 1, . . . , I) in period j (j = 1, . . . , T ), Xij is the20

treatment indicator introduced previously, δ is the treatment effect, βj is the jth fixed period effect, ci is the random cluster21

effect distributed byN(0, σ 2
c ), πij is the random cluster-by-period interaction distributed byN(0, σ 2

π ), sik is the random effect22

for repeated measures within the same individual distributed by N(0, σ 2
s ) and ϵijk is the N(0, σ 2

ϵ ) residual error. We assume23

ci, πij, sik and ϵijk are independent of each other, and denote the total variance of response Yijk by the sum of all the variance24

components σ 2
= σ 2

c + σ 2
π + σ 2

s + σ 2
ϵ . We further assume that σ 2

π , σ
2
s ≥ 0 and σ 2

c , σ
2
ϵ > 0. Notice that in a cross-sectional25

design where different sets of individuals are assessed in different periods, the between-individual variance component is26

usually assumed to be zero, σ 2
s = 0. The Hussey and Hughes model is obtained by further assuming no random cluster-by-27

period interaction so that σ 2
π = 0.28

For a cohort stepped wedge design, we recognize the following three correlation parameters to describe the individual29

responses, following the notations in Preisser et al. (2003). The within-period correlation is defined as the correlation30

between the responses of two distinct individuals in the same cluster within the same period, α0 = Corr(Yijk, Yijk′ ) =31

(σ 2
c + σ 2

π )/σ
2; the inter-period correlation is defined as the correlation between the responses of two distinct individuals32

in the same cluster at two distinct periods, α1 = Corr(Yijk, Yij′k′ ) = σ 2
c /σ

2; the individual auto-correlation is defined as the33

correlation between the responses of same individual at two distinct periods, α2 = Corr(Yijk, Yij′k) = (σ 2
c + σ 2

s )/σ
2. Since σ 2

c34

and σ 2
ϵ are assumed to be strictly positive, two natural constraints for the correlation parameters are 0 < α1 ≤ α0 < 1 and35

0 < α1 ≤ α2 < 1.36

Following Hussey and Hughes (2007), we can write the mean response for each cluster-period as37

Yij =
1
N

N∑
k=1

Yijk = βj + δXij + ci + πij + s̄i· + ϵ̄ij·, (2)38

where s̄i· =
∑N

k=1sik/N and ϵ̄ij· =
∑N

k=1ϵijk/N . If the variance components are known, the generalized least square39

solution δ̂ is used to estimate the treatment effect. The variance of δ̂ is given by the (T + 1, T + 1)th element of the40

covariance matrix Nσ 2(
∑I

i=1Z
′

iR
−1
i Zi)−1, where Zi is the T × (T + 1) fixed-effects design matrix for cluster i, namely41

Zi = (IT ,Xi) with IT the T × T identity matrix, and Ri is proportional to the correlation structure of the cluster-period42

means, and could be written as Ri = ψIT + ξ JT , where JT is a matrix of ones, ψ = 1 + (N − 1)α0 − (N − 1)α1 − α2 and43

ξ = (N − 1)α1 + α2. Since Ri is compound symmetric, the inverse can be analytically calculated as R−1
i = IT/ψ − ξ JT/(γψ)44

where γ = ψ + Tξ = 1 + (N − 1)α0 + (T − 1)(N − 1)α1 + (T − 1)α2. It follows from block matrix inversion and some45

simplification algebra that the variance of δ̂ is46

Var(δ̂) =
IN−1σ 2γψ

(IU − W )γ + (U2 − IV )ξ
, (3)47

where U =
∑I

i=1
∑T

j=1Xij,W =
∑T

j=1(
∑I

i=1Xij)2 and V =
∑I

i=1(
∑T

j=1Xij)2 are design constants depending on the treatment48

sequence for each cluster. In cross-sectional studies without random cluster-by-period interaction and without random49

individual effects, i.e. σ 2
π = σ 2

s = 0, variance (3) reduces to the well-known Hussey and Hughes formulae (Hussey and50

Hughes, 2007). An alternative derivation of an equivalent expression to (3) using the cluster mean correlation Tξ/γ is given51

in Girling and Hemming (2016).52
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