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a b s t r a c t

We outline objective Bayesian testing procedure for the intraclass correlation coefficient
in linear models. For it, we derive the Bayes factors based on the divergence-based priors,
which have unidimensional integral expressions and can thus be easily approximated
numerically.
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1. Introduction

Consider the intraclass model of the form yi = Xiβ + εi, i = 1, 2, . . . , n, where yi is a k × 1 (k ≥ 2) vector of response
variables,Xi is a k×p designmatrix of (p−1) regressors (assuming the first column is ones) with p < k, andβ is a p×1 vector
of unknown regression parameters. We assume that the random error εi

iid
∼ Nk(0k, σ

2V), where
iid
∼ stands for ‘‘independent

and identically distributed’’, 0k is a k × 1 vector of zeros, and V = (1 − ρ)Ik + ρJk with Ik being a k × k identity matrix and
Jk being a k × k matrix containing only ones. The parameter ρ is often referred as the intraclass correlation coefficient (for
short, ICC). Note that ρ ∈ (−(k − 1)−1, 1) is the necessary and sufficient condition for positive-definiteness of V.

By letting y′
= (y′

1, . . . , y
′
n), X′

= (X′

1, . . . ,X
′
n), and y′

= (ε′

1, . . . , ε
′
n), the intraclass model can be represented as

y = Xβ + ε, where ε ∼ Nnk(0nk, σ
2W), where W = In ⊗ V with ⊗ being the Kronecker product. Let ν = (σ 2, β). We

are interested in testing H1 : ρ = 0 versus H2 : ρ ̸= 0, or equivalently, using the model selection notation, in comparing
two competing models

M1 : f1(y | ν) = f (y | 0, ν) versus M2 : f2(y | ρ, ν) = f (y | ρ, ν). (1)

The ICChas a lengthyhistory of practical applications as a coefficient of reliability. For example, in themultilevelmodeling,
ICC is often adopted to measure the strength of correlation in a hierarchical data, which helps researchers determine if the
uncorrelatedness assumption is violated in the data. Another practical example is the following, extracted from Chapter 5.2
of Frees (2004): twenty-seven individuals including 16 boys and 11 girls were measured for distances from the pituitary to
the pteryomaxillary fissure in millimeters, at ages 8, 10, 12, and 14. In this case, the distance yij measured in millimeters
is the response for individual i measured at age j, the design matrix consists of two columns with the first being age and
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the second being gender, and εi
iid
∼ N(04, σ

2Σ) with Σ = (1 − ρ)I4 + ρJ4. We are interested in studying how strong the
individuals resemble each other (i.e., ρ = 0, where ρ represents the resemblance among individuals).

As suggested by Berger and Pericchi (2001), we adopt the Bayesian approach to address the model selection problem
in (1). Although there exist several Bayesian alternatives (see, for example, Ghosh and Heo, 2003; Lee and Kim, 2006), the
hypothesis testing of the ICC has not well been studied from an objective Bayesian perspective. We here consider the Bayes
factor (Kass and Raftery, 1995), because it has an intuitive meaning of ‘‘measure of evidence’’ in favor of a model under the
hypotheses. The Bayes factor (BF) in favor ofM2 and againstM1 can be expressed as

BF21 =
p(y | M2)
p(y | M1)

=

∫
f2(y | ρ, ν)π2(ρ, ν) dρ dν∫

f1(y | ν)π1(ν) dν
, (2)

where π1(ν) and π2(ρ, ν) are the prior probabilities underM1 andM2, respectively. When BF21 > (<)1, it indicates the data
are more likely to have occurred underM2 (M1). For instance, BF21 = 5 indicates that the data are 5 times more likely under
M2 than under M1 (BF12 = 1/BF21 = .2). A set of verbal labels to categorize the evidential impact in terms of the values of
the BF was provided by Jeffreys (1961) and further illustrated by Kass and Raftery (1995). The posterior probability of M1

given the data is p(M1 | y) =
[
1 + BF21p(M2)/p(M1)

]−1, where p(M2)/p(M1) is the prior model odds between two models,
which is assumed to be 1 in this paper.

A critical ingredient of deriving the BF is to specify priors for the unknownparameters. Direct use of noninformative priors,
such as the Jeffreys prior (Jeffreys, 1961), often result in the BF containing undefined constants. Bayarri and García-Donato
(2008) proposed an attractive way to obtain noninformative while proper priors, (so-called the divergence-based (DB)
priors). Since then, the DB priors have been implemented for Bayesian hypothesis testing; see, for example, García-Donato
and Sun (2007) for the one-way random-effects model, Kim et al. (2017) for linear models with first-order autoregressive
residuals. We here derive the DB priors and their resulting BFs for the model selection problem in (1). Numerical results
show that they perform very well in terms of the sum of two error probabilities, i.e., the probability of incorrectly choosing
M2 whileM1 is true and the probability of incorrectly choosingM1 whileM2 is true, respectively.

The remainder of this paper is organized as follows. In Section 2, we derive the DB priors and their resulting BFs. In
Section 3,we conduct simulations to evaluate the performance of the BFs. Some concluding remarks are provided in Section 4,
with proofs given in the supplementary file.

2. The DB priors and the resulting BFs

2.1. Objective priors for the unknown parameters

We here used the orthogonal reparameterization to the parameters, which means that if the parameters are orthogonal
if their expected Fisher information matrix is diagonal. This would justify the use of same (even improper) priors for the
orthogonal parameters (see Kass and Vaidyanathan, 1992). We follow the orthogonal reparameterization of Ghosh and Heo
(2003) and let θ1 = ρ, θ2 =

1
σ2 (1 − ρ)−(k−1)/k

(
1 + (k − 1)ρ

)−1/k, and θ3 = β. The model selection problem in (1) becomes
comparing two models

M1 : f1(y | θ0 = 0, θ2, θ3) = Nnk
(
Xθ3, θ

−1
2 Ink

)
,

M2 : f2(y | θ1, θ2, θ3) = Nnk
(
Xθ3, θ

−1
2 Σ

)
, (3)

whereΣ = (1−θ1)−(k−1)/k
(
1+ (k−1)θ1

)−1/kW and V = (1−θ1)Ik+θ1Jk.Wehere focus on the second-ordermatching prior
for (θ1, θ2, θ3) due to its nice frequentist coverage probability (Datta and Mukerjee, 2004). This prior (Theorem 1 of Ghosh
and Heo, 2003) underM2 is given by

πN(θ1, θ2, θ3) ∝ (1 − θ1)−1(1 + (k − 1)θ1
)−1

θ−1
2 .

Under the orthogonal transformation (θ1 is orthogonal to θ2 and θ3), ν = (θ2, θ3) can be viewed as common parameters
of both models in (1) and assumed to have the same meaning to both models. This allows us to adopt the improper prior
πN(θ2, θ3) ∝ θ−1

2 , which shows that a noninformative prior for θ1 can be written as

πN(θ1 | θ2, θ3) ∝ (1 − θ1)−1(1 + (k − 1)θ1
)−1

. (4)

For the unknown parameters of two models in (3), we consider πN(θ2, θ3) ∝ θ−1
2 under M1 and πN(θ1, θ2, θ3) ∝ πN(θ1 |

θ2, θ3)πN(θ2, θ3) underM2.

2.2. The DB priors

The DB priors are designed to use other formal rules to construct objective priors of the new parameters under the
alternative hypothesis and are derived based on themeasure of the direct Kullback–Leibler (KL) divergence of two competing
models, raised to a negative power. The KL divergence betweenM1 andM2 in (3) is given by

KL[θ0 : θ1] =

∫
log

f2(y | θ1, θ2, θ3)
f1(y | θ0, θ2, θ3)

f2(y | θ1, θ2, θ3)dy. (5)
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