
STAPRO: 8130 Model 3G pp. 1–7 (col. fig: nil)

Please cite this article in press as: Shushi T., Stein’s lemma for truncated elliptical random vectors. Statistics and Probability Letters (2018),
https://doi.org/10.1016/j.spl.2018.02.008.

Statistics and Probability Letters xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Stein’s lemma for truncated elliptical random vectors
Tomer Shushi
Actuarial Research Center, Department of Statistics, University of Haifa, Israel
Department of Economics and Business Administration, Ariel University, Israel

a r t i c l e i n f o

Article history:
Received 13 September 2017
Received in revised form 29 January 2018
Accepted 9 February 2018
Available online xxxx

Keywords:
Capital asset pricing models
Density generator
Elliptical distributions
Siegel’s formula
Stein’s lemma
Truncated random vectors

a b s t r a c t

In this letter we derive the multivariate Stein’s lemma for truncated elliptical random
vectors. The results in this letter generalize Stein’s lemma for elliptical random vectors
given in Landsman andNešlehová (2008), and the tail Stein’s lemma given in Landsman and
Valdez (2016). We give a conditional Stein’s-type inequalities and a conditional version of
Siegel’s formula for the elliptical distributions, and by thatwe generalize results obtained in
Landsman et al. (2013) and in Landsman et al. (2015). Furthermore, we show applications
of the main results in the letter for risk theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Stein’s lemma (Stein, 1981) gives an important and elegant formula for the multivariate normal distributions, and has 2

many applications in quantitative finance and statistics (Froot, 2007; Landsman and Nešlehová, 2008; Adcock, 2014; Gron 3

et al., 2012; Vanduffel and Yao, 2017). In quantitative finance, this lemma is used to calculate capital asset pricingmodels for 4

returns of arbitrary number of dependent assets (Fama and French, 2004; Levy, 2012; Barberis et al., 2015). Furthermore, a 5

vast number of models deal with asset returns as truncated random variables. For example, value at risk measure, tail value 6

at risk measure, truncated regression models, and censored quantile regressions, are models that are based on truncated 7

random variables (Liu, 1994; Cousin and Di Bernardino, 2014; Landsman et al., 2016; Kong and Xia, 2017). Therefore, it 8

seems natural to generalize Stein’s lemma for truncated random vectors. 9

Let (X1, X2)
T be a bivariate normal random vector and consider a differentiable function h : R2

→ R such that 10

E
(⏐⏐h′ (X1)

⏐⏐) < ∞. Then, the bivariate Stein’s lemma states that (see, for instance, Landsman and Nešlehová, 2008) 11

Cov (h (X1) , X2) = Cov (X1, X2) · E
(
h′ (X1)

)
. 12

Suppose we have an n-variate normal random vector X ∽ Nn(µ,Σ), and a differentiable function h : Rn
→ R such that 13

the expectation of the norm of ∇h(X) = (∂h (x) /∂x1, ∂h (x) /∂x2, . . . , ∂h (x) /∂xn)T exists. Then, Stein’s lemma is given by 14

Stein (1981) 15

Cov (h (X) ,X) = ΣE (∇h (X)) . 16

In the following section we give a definition for the family of elliptical distributions and describe several of its important 17

properties. In Section 3 we derive Stein’s lemma for truncated elliptical random vectors, we then generalize several results 18

about Stein’s identity and Siegel’s formula, and show important inequalities of the proposed truncated Stein’s lemma. 19

Section 4 presents applications of the main results in the letter for risk theory. 20
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2. The elliptical distributions1

The family of elliptical distributions is an extension of the normal distribution (Cambanis et al., 1981) into a broader2

family. LetX be n×1 random vector following elliptical distribution,X ∽ En(µ,Σ, gn). Then, the probability density function3

(pdf) of X is4

fX(x) =
1

√
|Σ |

gn

(
1
2
(x − µ)TΣ−1(x − µ)

)
, x ∈ R, (1)5

where gn (u) , u ≥ 0, is called the density generator of X, µ is an n × 1 vector of means, andΣ is an n × n scale matrix. The6

characteristic function of X takes the form ϕX(t) = exp(itTµ)ψ( 12 t
TΣt), t ∈ Rn, with some function ψ(u) : [0,∞) → R,7

called the characteristic generator. The covariance matrix of X is then given by Cov (X) =
σ2
Z
n Σ, where σ 2

Z = −ψ ′(0). For8

the sequel, we define a cumulative generator function Gn(u) (see, for instance, Landsman et al. (2016)), such that9

Gn(u) =

∫
∞

u
gn (x) dx, (2)10

and an associated elliptical random vector X∗ ∽ En(µ,Σ, nGn/σ
2
Z ) whose pdf takes the form11

fX∗ (t) =
n

σ 2
Z
√

|Σ |
Gn

(
1
2
(t − µ)TΣ−1(t − µ)

)
, t ∈ Rn. (3)12

3. Stein’s lemma for truncated elliptical random vectors13

We define an almost differentiable function h : Rm
→ R, 1 ≤ m < n, under the following condition14

E
(∇h

(
X∗

))
< ∞, (4)15

where ∇ = d/dx is the n-multivariate operator of first derivatives, and ∥·∥ is the Euclidean norm on Rm.16

To present Stein’s lemma for truncated elliptical random vectors, we define a subset of Rn, R ⊆ Rn which is a subset of17

all possible outcomes of X ∈ Rn, and a conditional expected value ER (h (X) (X − µ)) := E (h (X) (X − µ) |X ∈ R)with the18

conditional covariance of
(
h (X) ,XT

)T
, CovR (h (X) ,X) := ER (h (X) (X − µ))− E (h (X) |X ∈ R) · E (X − µ|X ∈ R).19

Theorem 1. Let X be an elliptical random vector, X ∽ En(µ,Σ, gn). Then, Stein’s lemma for the truncated random vector20

X| (X ∈ R) takes the form21

ER (h (X) (X − µ)) = Cov (X) E
(
∇h

(
X∗

)
|X∗

∈ R
) F∗ (R)

F (R)
− Eδ

(
h
(
X∗

))
. (5)22

Here23

Eδ
(
h
(
X∗

))
= E

(
h
(
X∗

)
δ
(
X∗

∈ R
)) σZ

√
nF (R)

,24

where25

δ
(
X∗

∈ R
)

=

(
δCov(X)1/21

δCov(X)1/22
... δCov(X)1/2n

)
(6)26

is an n × 1 vector of surface delta functions δa = −a · ∇1X∗∈R (see, Lange (2012)), Cov(X)1/2i , i = 1, 2, . . . , n is the ith row of27

Cov(X)1/2, F (R) = Pr (X ∈ R) , and F∗ (R) = Pr (X∗
∈ R) .28

Proof. Using the indicator function 1x∈R and under the linear transformationΣ−1/2 (X − µ) = z,we have

E (h (X) (X − µ) |X ∈ R)

=
1

|Σ |
1/2F (R)

∫
R

h(x) (X − µ) gn

(
1
2
(X − µ)TΣ−1 (X − µ)

)
dx

= F(R)−1Σ1/2
∫
Rn

h
(
µ+Σ1/2z

)
1z∈RZ · zgn

(
1
2
zT z

)
dz,

where the set RZ is such that {X ∈ R} = {Z ∈ RZ }. Taking into account the density generator G (u) (2) and the associated
pdf (3), similar to Proposition 2 in Landsman et al. (2015) after partial integration and algebraic calculations, we observe
that

E (h (X) (X − µ) |X ∈ R) = Cov (X) E
(
∇h

(
X∗

)
|X∗

∈ R
) F∗ (R)

F (R)

+
σZ

√
nF (R)

Cov(X)1/2E
(
h
(
X∗

)
∇1X∗∈R

)
.
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