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a b s t r a c t

We explore the main characteristics of big brain network data that offer unique statistical
challenges. The brain networks are biologically expected to be both sparse and hierar-
chical. Such unique characterizations put specific topological constraints onto statistical
approaches and models we can use effectively. We explore the limitations of the current
models used in the field and offer alternative approaches and explain new challenges.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

Wikipedia defines big data as datasets that are so large or complex that traditional data processing application software 2

is inadequate to deal with them (en.wikipedia.org/wiki/Big_data). Big data is not just about the size of the data although 3

that is the main obstacle of using traditional statistical approaches. Big data usually include datasets with sizes beyond the 4

ability of standard software tools to process and analyze within a reasonable time limit. Even 100 MB of data can be big if 5

existing computing resources can only handle 1 MB of data at a time. Thus, the size of the data is a relative quantity respect 6

to the available computing resources. 7

If we pick any article in big data literature these days, chances are that we often encounter hardware solutions to solving 8

big data problems. They often suggest increasingmore central processing units (CPU) or graphical processing units (GPU) and 9

emphasize the need for cluster or parallel computing. For instance, Boubela et al. (2016) suggests to use parallel computing as 10

a way to compute large-scale Pearson correlation coefficients for 390 GB of data in the Human Connectome Project (HCP) 11

but did not suggest any other simpler algorithmic approaches that can be implemented in a limited computing resource 12

environment. Simply adding more hardware is not necessarily an effective but costly strategy for big data. Such hardware 13

approaches often do not provide a venue for more interesting statistical problems. Further, the access to fast computational 14

resources is not necessarily given to everyone. Many biological laboratories still do not have technical expertise of using 15

cluster or parallel computing. Therefore, it is often necessary to develop more algorithmic and statistical approaches in 16

addressing big data at least for biological sciences. 17

In this paper, we focus on the statistical challenges of big data in brain imaging and networks that are somewhat different 18

from more traditional big data problems. 19

2. Large-scale brain imaging data 20

Many big datasets introduce unique computational and statistical challenges that include scalability, storage bottleneck, 21

data representation visualization, and computationmostly related to sample sizes (Fan et al., 2014). However, the challenges 22

in big brain imaging datasets such as HCP and Alzheimer’s Disease Neuroimaging Initiative (ADNI; adni.loni.usc.edu) are 23
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Fig. 1. Dense resting-state fMRI correlation network consisting of 25000 nodes obtained fromHCP. The network is so dense, simply displaying all the nodes
and edges of the network is not very informative. It is necessary to represent such dense network more sparsely. The sparse correlation network model
with sparse parameters λ = 0, 3, 0.5, 0.7 (Chung et al., 2017c). It can be shown that they form a nested hierarchy called the graph filtration.

slightly different. There are substantiallymore number of voxels (p) per image than the number of images (n) in the datasets.1

Even at 3 mm low resolution, functional magnetic resonance images (fMRI) has more than 25000 voxels (Chung et al.,2

2017c). Unless the dataset consists of more than 25000 images, brain imaging is often the problem of small-n large-p, which3

is different from the usual big data setting where n is often big. HCP and ADNI have n in the range of a thousands, far smaller4

than the number of voxels.5

Traditionally, numerical accuracy has been less of concerns in brain imaging particularly due to spatial and temporal6

smoothing often done in images to smooth out various image processing artifacts and physiological noises. Due to the7

increased sample size and the central limit theorem, which is further reinforced by smoothing, the statistical distribution of8

the data might become less of a concern in big imaging data (Salmond et al., 2002).9

In the traditional mass univariate approaches (Chung et al., 2015; Worsley et al., 1992), where statistical inference is10

done at each voxel, the problem of small-n large- p is not critical. Further, spatial smoothing has the effect of reducing the11

number of resolution element (RESEL), so we have far less number of effective p (Worsley et al., 1992). Smoothing also12

reduces the effect of image registration errors and high frequency noise. Gaussian kernel smoothing introduces continuous13

hierarchical structure through scale space (Worsley et al., 1996). However, small-n large-p problems become critical in14

brain network modeling, where we need to correlate different voxels. In the small-n large-p setting, the sample covariance15

and correlation matrices are no longer positive definite. Subsequently, up to p − n nodes are statistically dependent16

although there might be no true dependency at all. Thus, there is need to constrain the covariance or correlation matrices17

by regularization methods such as sparse network models. Unfortunately, for large p, many sparse models have severe18

computational bottlenecks (Chung et al., 2015).19

There begin to emerge large-scale brain networks with more than 25000 nodes, where each voxel is taken as a20

network node (Fig. 1) (Chung et al., 2017c; Eguíluz et al., 2005; Hagmann et al., 2007; Taylor et al., 2017). The size of21

such large-scale brain networks can easily match publicly available network data such as Stanford Large Network Dataset22

(snap.stanford.edu/data). In such large-scale networks, the small-n large-p problem will be more severe.23

3. Large-scale brain networks24

Purely data-driven approaches for large-scale brain networks are not going to be computationally efficient or effective. It25

is often necessary to incorporate the first-order principles of brain networks into models to possibly reduce computational26

bottlenecks.27

3.1. Sparsity28

At the microscopic level, the activation of cortical neurons in the brain show sparse and widely distributed pat-29

terns (Histed et al., (2009)). At the macroscopic level, diffusion tensor imaging (DTI) can produce up to a half million white30

matter fiber tracts per brain. Even then not every part of the brain is anatomically connected to other parts of the brain but31

sparsely connected (Chung et al., 2017b). This can be seen from Fig. 2, where the brain is parcellated into 116 disjoint regions32

and the number of white matter fiber tracts passing between the regions is used in constructing the structural connectivity33

matrix (Chung et al., 2017b). Even though thewhitematter fibers are very dense, the resulting connectivitymatrix is sparse.34

For 116×116 connectivitymatrix, 60% of entries are zeros. Aswe increases the number of parcellations, the sparsity increases35
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