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a b s t r a c t

Following from Krivoruchko and Bivand (2009), we consider some general points related
to challenges to the usefulness of big data in spatial statistical applications when data
collection is compromised or one ormoremodel assumptions are violated.We look further
at the desirability of comparison of new methods intended to handle large spatial and
spatio-temporal datasets.

© 2018 Published by Elsevier B.V.

1. Changes in data collection 1

Although in some application areas, data continue to be collected by carefully planned and costed surveys (for example 2

mining and petroleum), supplemented by secondary use of remote sensing and ancillary information, in others the data are 3

often harvested rather than acquired. Costs associated with the use of such data are related to its capture and storage, rather 4

than its planned collection. This suggests that there is a major difference in data acquisition strategies between key sectors 5

of the economy and government for whom geographical position matters, and those who hold user-generated data and try 6

to retro-fit geographical position to this information. 7

For example, collecting a series of dynamic measurements taken from a car, boat, or other means of transportation using 8

a GPS-enabled sensor has become a common practice (Krivoruchko and Frączek, 2016). A strong effort wasmade to estimate 9

the magnitude of the radioactively polluted air over the urban area of Fukushima six months after the accident at the 10

NPP. Radiation meters installed on 16 survey cars recorded the intensity of radiation between September 13th and 29th, 11

2011. Overall, more than 112,000 recordings of radiation intensity were taken. The main effort of those who were sampling 12

radiation was to cover the largest possible length of transects. Some of the streets were driven twice, as sometimes the car 13

had to drive in different directions along the same street. On somewide streets, possiblywith separated directional lanes, the 14

measured values of radiation varied significantly. The difference in radiation on the two sides of the street can be explained 15

not by the spatial distance, but by temporal separation between the times at which the observations were collected. Such a 16

sampling design is problematic even for estimating pollution on the road where the air is changing every minute due to the 17

movement of the vehicle (Krivoruchko and Frączek, 2016). The post-Fukushima data collection from cars resulted in much 18

more data than it was available post-Chernobyl. However, in the latter case much attention was given to sample design and 19

careful data collection, based on understanding the physical and chemical processes. We feel strongly that careful design of 20

data collection is much more important for modeling and handling uncertainty than the rapid generation of large volumes 21

of data. 22
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Among spatial data collection issues, spatial and temporal support are central, with ensuing change of support problems1

when data from different sources need to be integrated (Gotway and Young, 2002; Krivoruchko and Gotway Crawford,2

2005; Gelfand, 2010). Naturally, if the observations are collected by design, these problems can be mitigated at least in3

some measure, so the design of spatial samples should be considered carefully, especially in connection with the prior4

understanding of the spatial ‘‘reach’’ of underlying processes (Wang et al., 2012). Contemporary applications of ‘‘big data’’5

often have no secure positional information, and proxy by informed guesses. For example, the overwhelming majority6

of tweets do not provide GPS-based point positions. Having millions of observations with large unknown and varying7

measurement/locational error is not better than having hundreds of poor measurements.8

One useful option for dealing with the uncertainty of individual observations is allowing for the specification of the9

individual measurement errors in the format of one standard deviation, or weights so that data with higher weights will10

have more impact on the interpolation model (as provided, for example, in empirical Bayesian kriging and local polynomial11

interpolation in Geostatistical Analyst). Locational error can be treated as measurement error. Although the error in the data12

coordinates may change the covariance model significantly (see for example Fig. 1 in Cressie and Kornak, 2003 p. 443), the13

suggested or similar models are not used in practice. However, the locational error has the same effect on the kriging model14

as the measurement error: increasing the nugget effect parameter.15

Positional error is also discussed by Fanshawe and Diggle (2011) and Chakraborty and Gelfand (2010), but without16

the concerns raised there being followed up in software implementations. Another article from the same year, Diggle et al.17

(2010), points to the additional serious issue of inferencewhen the data come frompreferential samples that violate the basic18

assumptions of the methods used. A recent article using these results questions the usefulness of using big data acquired for19

precision farming for soil mapping; farmers will collect more samples at locations of greater interest for them (Rawlins et20

al., 2017).21

What is the threshold for big data? For statisticians, it is simply when there are numerical problems in linear algebra on22

large dense matrices. But for GIS user, it is when there is a problem with data storage and data querying. When spatial23

statisticians report advances in solving big data problems, the numbers involved seldom exceed around one hundred24

thousand points, so there is still plenty to do, not least because big datasets appear to force the use of simple models with25

unrealistic assumptions.26

2. Some problems with modeling big spatial data27

Although big spatial data are collected in the ionosphere, atmosphere, ocean, on the land and subsurface, only a small28

number of organizations are using recently developed statisticalmethodologies for the big data analysis. One example is data29

permanently collected by NOAA (at themoment there are about 50millionmultivariate observations). Each ‘‘measurement’’30

typically consists of the values of temperature, salinity, oxygen, nitrates, phosphates and silicates at the particular depth31

collected at a particular time (NOAA, 2013). Note that the number of observations collected at different locations varies32

dramatically making data interpolation challenging, see Fig. 1. It seems that for many large organizations, the time of big33

data arrived totally unexpectedly. NOAA is still using old trusted functionality, interpolating the ocean data using three34

nearest points (Reiniger and Ross, 1968). The World Ocean Atlas documentation states:35

If data coverage allows,we use the 4-point Reiniger–Ross interpolationmethod directly, no changes to their algorithm.36

. . . We also use three point Lagrangian or, as a last resort, linear interpolation, when there are not enough valid points37

for Reiniger–Ross (https://www.nodc.noaa.gov/OC5/wod-woa-faqs.html).38

We think that it is a problem that such an indefensible approach is used, but perhaps they are apprehensive about having39

to re-estimate everything backwards if they tried better alternatives? Many organizations seem to be stuck in maintaining40

backward compatibility, but should move to sounder methods that take modern computational capacity into account. In41

particular, Lagrangian interpolation (Reiniger and Ross, 1968) has too many shortcomings to be used today.42

We illustrate another common problem with real data interpolation using average annual rainfall values in South43

Africa. 8397 measurements are available for the territory covered by mountains, desert, and jungles. The data are provided44

by Krivoruchko (2011).45

Fig. 2 (top left) shows the data locations and their estimated density and (top right) the annual rainfall standard deviation46

in areaswith approximately 200 observations. Note that standard deviation values in areas colored in red is about eight times47

larger than the values in green polygons. We expect that the estimated prediction uncertainty should be larger in the areas48

with larger data variation. When the data variation is about the same, the prediction error should be larger in the areas with49

lower observation density.50

Fig. 2 (bottom) shows the annual precipitation prediction standard errors produced by the stochastic partial differential51

equation (SPDE: left Lindgren et al., 2011) and empirical Bayesian kriging (EBK: right Krivoruchko and Gribov, 2014) models.52

There is a big difference in the spatial structures of the prediction errors: SPDE largely reflects the density of the data53

locations, while the EBK prediction standard errors pattern is qualitatively similar to the precipitation data variance map.54

Additionally, the EBK prediction error is a function of the data density.55

Note that in the meteorological literature, precipitation values are typically modeled using the gamma distribution and56

the mean and variance of that distribution are related. Therefore, the precipitation prediction standard error should be a57

function of the prediction. Accordingly, large prediction standard errors in the northwestern part of South Africa near the58
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