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a b s t r a c t

We fill two gaps in the literature on central limit theorems. First we state and prove a
generalization of the Cramér–Wold device which is useful for establishing multivariate
central limit theoremswithout the need for assuming the existence of a limiting covariance
matrix. Second we extend and provide a detailed proof of a very useful result for establish-
ing univariate central limit theorems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many applications of spatial statistics involve spatially varying covariates. One common example is universal kriging
(e.g. Chilès and Delfiner, 2008), where a deterministic component of a spatial variable is modeled using a regression on
spatial covariates. Another example, which we will discuss in some detail for illustrative purpose, is log-linear modeling
of intensity functions for spatial point processes, see e.g. Rathbun and Cressie (1994), Rathbun (1996), Schoenberg (2005),
Waagepetersen (2007) and Guan and Loh (2007). Such models have for example found much use in ecology where point
processes are used to model locations of plants and animals, and the covariates could describe landscape type, topography
or soil properties.

Letting Z = {Z(u)}u∈Rd where for each u ∈ Rd, Z(u) ∈ Rp is a covariate vector, the intensity function is often assumed to
be of the form

ρ(u; β) = exp(βTZ(u)) (1)

where β ∈ Rp. In the aforementioned references, the regression parameter β is inferred using an estimating function given
by the score of the log likelihood function of a Poisson process. For deriving asymptotic results it is crucial to establish
asymptotic normality of the estimating function. Often increasing domain asymptotics are used where a sequence {Wn}n≥1
of bounded but increasing observation windowsWn ⊂ Rd are considered. The score estimating function is then

en(β) =

∑
u∈X∩Wn

Z(u) −

∫
Wn

Z(u)ρ(u; β)du (2)

where X denotes the spatial point process. An estimate of β is obtained by solving en(β) = 0.
In spatial statistics in general, central limit theorems forα-mixing spatial processes are very popular tools for establishing

asymptotic results both for random field and point process models. In case of the model (1), asymptotic properties of
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estimators of β were for example established by central limit theorems for α-mixing spatial processes in Guan and Loh
(2007) and Waagepetersen and Guan (2009). Bolthausen (1982) provided a much cited central limit theorem for stationary
α-mixing random fields. This result was later extended to the non-stationary case by Guyon (1995). Karácsony (2006)
extended the result further to triangular arrays considering a combination of infill and increasing domain asymptotics.When
taking a deeper look at the techniques employed in the proofs of the aforementioned references, a couple of issues may
disturb the reader. These are addressed in Sections 2–3.

2. Cramér–Wold device

Bolthausen (1982), Guyon (1995) and Karácsony (2006) only gave detailed proofs of central limit theorems in the
univariate case. Guyon (1995) and Karácsony (2006) also stated multivariate central limit theorems and just referred to
the Cramér–Wold device for extending the univariate central limit theorems to themultivariate case. However, a closer look
shows that a simple application of the Cramér–Wold device does not always suffice. Suppose that {Xn}n≥1 is a sequence of
random vectors in Rp. The Cramér–Wold device (e.g. p. 383 in Billingsley, 1995) then says that Xn converges in distribution
to a random vector X if and only if, for all a ∈ Rp, aTXn converges in distribution toward aTX . In statistical applications we
often want to show that Var(Xn)−1/2Xn converges in distribution toward N (0, Ip) as n goes to infinity for some sequence of
statistics Xn. If Var(Xn) converges to a fixed positive definite matrix Σ then this is equivalent to showing that Xn converges
in distribution toward N (0, Σ) and the application of the Cramér–Wold device is trivial.

However, inmany applications a limit for Var(Xn) does not exist. Returning again to the problem of inferring the intensity
function (1) and letting Xn = en(β)/|Wn|

1/2 be given by (2) normalized by |Wn|
1/2, the covariance matrix of Xn is

Σn =
1

|Wn|

(∫
Wn

Z(u)TZ(u)ρ(u; β)du +

∫
Wn

∫
Wn

Z(u)TZ(v)[g(u, v) − 1]dudv
)

where g(·, ·) is the so-called pair correlation function (e.g. Møller andWaagepetersen, 2004). Due to the dependency on Z(u),
u ∈ Wn, it is not reasonable to assume that Σn converges to a fixed limit. Guyon (1995) and Karácsony (2006) just refer to
the simple application of the Cramér–Wold device and in particular do not discuss the issue of whether a limiting covariance
matrix exists or not. To be on firm ground, a Cramér–Wold type result covering the case with no limiting covariance matrix
seems missing. Therefore, we state the following generalization of the Cramér–Wold device.

Lemma 2.1. Let {Xn}n∈N be a sequence of random variables in Rp such that

0 < lim inf
n→∞

λmin(Var(Xn)) < lim sup
n→∞

λmax(Var(Xn)) < ∞,

where for a symmetric matrix M, λmin(M) and λmax(M) denote the minimal and maximal eigenvalues of M.
Then, Var(Xn)−1/2Xn

distr.
−−−→
n→∞

N (0, Ip) if for all a ∈ Rp,

(
aT Var(Xn)a

)−
1
2 aTXn

distr.
−−−→
n→∞

N (0, 1).

The condition in this lemma regarding lim infn→∞λmin Var(Xn) is the kind of condition used in the central limit theorems
of Guyon (1995) and Karácsony (2006) and so is not restrictive in practice. A proof of this lemma is provided in Section 4.

3. A lemma by Bolthausen

Bolthausen (1982), Guyon (1995) and Karácsony (2006) all use the following key lemma.

Lemma 3.1. For n ∈ N, let {Xn}n∈N be random variables such that supn∈NE(X2
n ) < ∞ and for all t ∈ R,

E[(it − Xn)eitXn ] −−−→
n→∞

0.

Then Xn
distr.

−−−→
n→∞

N (0, 1).

Karácsony (2006) somewhat misleadingly coins this ‘Stein’s lemma’ and refers to Stein (1972) and Guyon (1995). Guyon
(1995) in turn refers to Stein (1972). However, the original reference is Bolthausen (1982) who states and proves the
lemma while acknowledging inspiration from Stein (1972). Stein’s lemma (Stein, 1981) says that if Z is standard normal
then E[f ′(Z)− Zf (Z)] = 0 for any differentiable f with E|f ′(Z)| < ∞. This result is related to but nevertheless different from
Lemma 3.1. We do not find Bolthausen (1982)’s very condensed proof easily accessible and believe it is useful to provide
a more detailed proof of this crucial lemma. Moreover, the conclusion of Lemma 3.1 holds under a weaker assumption as
stated below.
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