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a b s t r a c t

Wepropose amethod to screen group variables under the high dimensional group variable
setting for the proportional hazards model. We study the sure screening property of the
proposedmethod for independent and clustered survival data. The simulation study shows
that the proposedmethod performs better for group variable screening than some existing
procedures.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There is rich literature on group and within-group variable selection with possibly overlapping groups for the pro-
portional hazards (PH) model. Huang et al. (2014) proposed the group bridge for bi-level selection when the number of
covariates p is less than the number of observations n. An alternative approach by Wu andWang (2013) considered double
penalties: lasso and group lasso penalties for p > n. However, it lacks theoretical justification. Wang et al. (2009) proposed
a hierarchically penalized Cox regression. They used an adaptive penalty to achieve the bi-level selection consistency when
p < n. For p > n, they proposed to use the ridge regression to construct the adaptive penaltywithout theoretical justification.
Although these penalized regression methods may work when p is relatively larger than n, they may be computationally
expensive and unstable when p is much larger than n (p ≫ n).

Screening techniques for the PH model with p ≫ n have recently been given much attention (Zhao and Li, 2012; Yang
et al., 2016). However, these existing methods are all limited to individual variable screening for independent survival data
to the best of the authors’ knowledge. Therefore, motivated by Yang et al. (2016), we propose a sure group joint screening
(SGJS) procedure to screen group variables for the PH models when p ≫ n. We show the SGJS enjoys the sure screening
property for group variable screening under independent and clustered survival data. We also propose two ways to handle
overlapping group variables for screening. Simulation study is also conducted.

2. Sure group joint variable screening

2.1. Notations and assumptions

We first define the notations used throughout the rest of the paper. We assume there are m clusters and the ith cluster
has L individuals. The clusters may have different sizes by defining censoring times as zero when observed times are
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missing (Spiekerman and Lin, 1998). We denote n = mL as the total sample size. It is assumed that there are p number
of covariates. Let Tij, Cij, and Zij = (Zij1, . . . , Zijp)T be the event time, censoring time, and covariate vector of individual
j in cluster i, respectively, for i = 1, . . . ,m and j = 1, . . . , L. The covariate vector Zij may depend on time t . We omit
dependency on t in Zij(t) when the context is clear. Without loss of generality, we assume that Zij’s are standardized. The
parameter vector of interest is denoted as β = (β1, . . . , βp)T . Define β0 = (β10, . . . , βp0)T as the true parameter vector. Let
Ti = {Tij, j = 1, . . . , L}, Ci = {Cij, j = 1, . . . , L}, and Zi = {Zij, j = 1, . . . , L}. Suppose that (Ti, Ci, Zi) are independent and
identically distributed. We assume that the Tij’s are independent of the Cij’s given Zij for i = 1, . . . ,m and j = 1, . . . , L. Let
Xij = Tij ∧ Cij be the observed time and ∆ij = I(Tij ≤ Cij), where a ∧ b = min(a, b) and I(·) is an indicator function. Let
Nij(t) = I(Xij ≤ t,∆ij = 1) and Yij(t) = I(Xij ≥ t). The study period is assumed to be [0, τ ]. Given covariate vector Z, the
hazard function λ(t | Z) is defined as λ(t | Z) = λ0(t) exp(ZTβ), where λ0(t) is an unspecified baseline hazard function at
time t . Then, Spiekerman and Lin (1998) proposed the marginal log-partial likelihood function for clustered survival data
as follows:

ℓ(β) =

m∑
i=1

L∑
j=1

∆ij

[
βTZij − log

{ m∑
a=1

L∑
b=1

Yab(Xij) exp(βTZab)
}]
. (1)

Next, we define some notations on group variables and their memberships. Assume that we have K groups of variables.
Let A1, . . . , AK be subsets of {1, . . . , p} representing group memberships of variables. Define βA = (βj, j ∈ A)T and
βA,0 = (βj0; j ∈ A)T for a set A. Denote |A| as the cardinality of a set A. Without loss of generality, for disjoint groups
we assume that βi’s are on the order of groups such that β = (βT

A1 , . . . ,β
T
AK )

T , where βA1 = (β1, . . . , β|A1|)T and βAk =

(β|Ak−1|+1, . . . , β|Ak−1|+|Ak|)
T for k = 2, . . . , K .

2.2. Sure group joint variable screening for disjoint groups

In this section, we study the sure group joint variable screening when Ak’s are disjoint. To screen zero group variables for
the PH model, we propose the following penalized partial likelihood:

argmax
β
ℓ(β) subject to number of non-zero groups ≤ q, (2)

where q is pre-specified. We call this as the sure group joint screening (SGJS). Because p > n, it is not feasible to directly
solve (2). Thus, motivated by the Taylor expansion of ℓ(α) at β in a neighborhood of α, Yang et al. (2016) considered the
following function to approximate the log-partial likelihood function:

g(α | β) = ℓ(β) + (α − β)Tℓ′(β) −
u
2
(α − β)TW(β)(α − β), (3)

where u is a pre-specified constant andW(β) is a diagonal matrix consisting of the diagonal elements of −ℓ′′(β). Yang et al.
(2016) used g(α | β) in the optimization procedure to maximize ℓ(β) with L0 penalty.

The function g(α | β) in (3) may also be used to solve (2). However, for group structured variables, variables within
the same group often tend to be more correlated than variables between different groups. Motivated by this, we consider a
block diagonalmatrixW∗(β) instead of the diagonalmatrixW(β) in (3), where each block inW∗(β) consists of the sub-square
matrix of −ℓ′′(β) corresponding to each group. To elaborateW∗(β), define |A0| = 0. For k = 1, . . . , K , we defineW∗

k(βAk ) as
the sub-square matrix of −ℓ′′(β) corresponding to βAk as follows:

W∗

k(βAk ) = −

⎛⎜⎝ℓ
′′(β)|Ak−1|+1,|Ak−1|+1 · · · ℓ′′(β)|Ak−1|+1,|Ak|

...
. . .

...

ℓ′′(β)|Ak|,|Ak−1|+1 · · · ℓ′′(β)|Ak|,|Ak|

⎞⎟⎠ ,

where ℓ′′(β)a,b is the (a, b)th entry of ℓ′′(β). Define W∗(β) as follows:

W∗(β) =

⎛⎜⎜⎝
W∗

1(βA1 ) 0 · · · 0
0 W∗

2(βA2 ) · · · 0
...

...
. . .

...

0 0 · · · W∗

K (βAK )

⎞⎟⎟⎠ ,

where all non-block-diagonal elements are zeros. For group variable screening, we propose the following approximation at
β in a neighborhood of α:

g∗(α | β) = ℓ(β) + (α − β)Tℓ′(β) −
u
2
(α − β)TW∗(β)(α − β). (4)

For group variable screening, we propose to maximize g∗(α | β) as follows:

max
α

g∗(α | β) subject to number of non-zero groups ≤ q. (5)
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