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Abstract

Tracking an active sound source involves the modeling of non-linear non-Gaussian systems. To address this problem, this paper pro-
posed scaled unscented particle filter (SUPF) algorithm for tracking moving sound source. The particle filter part of the SUPF provides
the general probabilistic framework to handle non-linear non-Gaussian systems, and the scaled unscented Kalman filter (SUKF) part of
the SUPF generates better proposal distributions by taking into account the most recent observation. Meanwhile, models used in SUPF
algorithm were also explored for the sound source motion, observation and the likelihood of the sound source location in the light of the
Langevin process. Compared with the conventional PF approach, the simulated results demonstrated that the SUPF algorithm had supe-
rior tracking performance.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Sound source localization; Time delay of arrival; Scaled unscented particle filter; Kalman filter

1. Introduction

Reliable sound source tracking has been an active
research topic with the increasing applications in multime-
dia field, including automatically guiding the camera to
pick up the faces of speakers for video-conferencing, the
auditory system of a robot and providing steering informa-
tion for speech enhancement. Unfortunately, even after
years of research, robust and efficient tracking is still an
open problem.

The traditional approaches to address the problem col-
lect data from several microphones and use a frame of data
obtained at the current time to estimate the current source
location. These traditional methodologies can be divided
into two categories: (1) time-delay estimation (TDE) meth-
ods such as the well-known generalized cross-correlation
(GCC) function [1,2], which estimate location based on
the time delay of arrival of signals at the receivers and

(2) direct methods such as steered beamforming [3]. Each
method transforms the received frame of data into a func-
tion that exhibits a peak in the location corresponding to
the source. We will refer to this function as the localization
function. The practical disadvantage of these traditional
approaches is that reverberation causes spurious peaks to
occur in the localization function. These spurious peaks
may have greater amplitude than the peak due to the true
source, so that simply choosing the maximum peak to esti-
mate the source location may not give accurate results.

A promising technique that overcomes the drawback of
traditional methods is to use a state-space approach based
on particle filtering (PF), as recently described in [4,5]. The
key to these new techniques is that peak due to the true
source follows a dynamical model from frame to frame,
whereas there is no temporal consistency to the spurious
peaks. When the particles are properly placed, weighted,
propagated, posteriors can be estimated over time using a
sequential Monte Carlo method. However, most of them
(e.g. CONDENSATION) use the state transition prior as
the proposal distribution does not take into account the most
recent observation, the particles drawn from transition prior
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may have very low likelihood, and their contributions to the
posterior estimation become negligible. This type of particle
filters is prone to be distracted by background clutters [6,7].
To design better proposal distributions for particles filters, in
general, there are two approaches: the direct approach and
the indirect approach. The indirect approach attacks this
problem indirectly by using an auxiliary tracker to generate
the proposal distribution for the main tracker. The direct
method, on the other hand, addresses this problem directly
in its original space by taking into account the most recent
observation. The indirect method is adopted in the CON-
DENSATION algorithm [8], where a color auxiliary tracker
is used to generate the proposal distribution for the main
contour tracker. While better than the conventional particle
filters, this indirect approach has two major limitations.
First, in audio-based speaker localization, there is simply
no easy auxiliary tracker or sensing modality available. Sec-
ond, and more importantly, the auxiliary tracker itself needs
a good proposal distribution if it plans to use particle filters,
or it falls back to ad hoc approaches.

Merwe and Doucet have recently developed the scaled
unscented particle filter (SUPF) in the field of filtering the-
ory [7]. Based on this new development, in this paper, we
introduce a direct approach to generate better proposal dis-
tributions for moving sound source tracking. The SUPF is
a parametric and non-parametric hybrid of SUKF and par-
ticle filters. The particle filter part of the SUPF provides the
general probabilistic framework to handle non-linear non-
Gaussian systems, and the SUKF part of the SUPF gener-
ates better proposal distributions by taking into account
the most recent observation.

The remainder of this paper is organized as follows: Sec-
tion 2 described the particle filters framework focused on
the importance of the proposal distribution. In Section 3,
we present the SUPF algorithm, which apply the scaled
unscented Kalman filter to generate better proposal distri-
butions that seamlessly integrate the current observation.
According to Langevin process, the target’s motion model
for SUPF is built in Section 4, with a tracking simulation
following in Section 5. Finally, the findings of the paper
are summarized in Section 6.

2. Particle filter

In the pioneering work of CONDENSATION [8],
extend factored-sampling is used to formulate the particle
filter framework. Even though easy to follow, it obscures
the role of proposal distributions. In this section, we pres-
ent a new formulation of particle filtering theory that is
centered round proposal distributions. This new formula-
tion illustrates how to improve the particle filter’s perfor-
mance by designing better proposal distributions.

In Monte Carlo simulation, a set of weighted particles
(samples), drawn from the posterior distribution, is used
to map integrals to discrete sums. More precisely, the pos-
terior can be approximated by the following empirical
estimate

p̂ðx0:tjy1:tÞ ¼
1

N

XN

i¼1

d
x
ðiÞ
0:t
ðdx0:tÞ ð1Þ

where the random samples fxðiÞ0:t; i ¼ 1; � � � ;Ng are drawn
from the posterior distribution pðx0:tjy1:tÞ and dðd�Þ denotes
the Dirac delta function. Consequently, it follows from the
strong law of large numbers that as the number or samples
N increases, expectations can be mapped into sums. Unfor-
tunately, it is often impossible to sample directly from the
posterior density function. However, we can circumvent
this difficulty by sampling from a known, easy-to-sample,
proposal distribution qðx0:tjy1:tÞ.

Definition 1 [9,14]: A set of random samples
fxðiÞ0:t;wtðxðiÞ0:tÞ; i ¼ 1; � � � ;Ng drawn from a distribution q is
said to be properly weighted with respect to p if
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for any integrable function h. In a practical sense we can
think of p as being approximated by the discrete distribu-
tion supported on the x

ðiÞ
0:t with probabilities proportional

to the weights wtðxðiÞ0:tÞ. Furthermore, as N tends to infinity,
the posterior distribution p can be approximated by the
properly weighted particles drawn from q[7,9]:
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The weights are further given by
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where the particles fxðiÞ0:t;wtðxðiÞ0:tÞ; i ¼ 1; � � � ;Ng are drawn
from the known distributions q, ~wtðxðxðiÞ0:tÞÞ and wtðxðiÞ0:tÞ
are the unnormalized and normalized importance weights.
In order to compute a sequential estimate of the posterior
distribution at time t without modifying the previously sim-
ulated states x0:t, proposal distribution of the following
form can be used:

qðx0:tjy1:tÞ ¼ qðx0:t�1jy1:t�1Þqðxtjx0:t�1; y1:tÞ ð5Þ
Here we are making the assumption that the current state is
not dependent on future observations. Besides, under our
assumptions that the states correspond to a Markov pro-
cess and that the observations are conditionally indepen-
dent given the states [7], i.e.:

pðx0:tÞ ¼ pðx0Þ
Yt

j¼1

pðxjjxj�1Þ and

pðy1:tjx0:tÞ ¼
Yt

j¼1

pðyjjxjÞ ð6Þ

By substituting Eqs. (5) and (6) into Eq. (3), a recursive
estimate for the importance weights can be derived as
follows:
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