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a b s t r a c t

Piecewise Deterministic Monte Carlo algorithms enable simulation from a posterior distri-
bution, whilst only needing to access a sub-sample of data at each iteration. We show how
they can be implemented in settings where the parameters live on a restricted domain.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods have been central to the wide-spread use of Bayesian methods. However
their applicability to some modern applications has been limited due to their high computational cost, particularly in big-
data, high-dimensional settings. This has led to interest in newMCMCmethods, particularly non-reversible methods which
can mix better than standard reversible MCMC (Diaconis et al., 2000; Turitsyn et al., 2011), and variants of MCMC that
require accessing only small subsets of the data at each iteration (Welling and Teh, 2011).

One of the main technical challenges associated with likelihood-based inference for big data is the fact that likelihood
calculation is computationally expensive (typically O(N) for data sets of size N). MCMC methods built from piecewise
deterministic Markov processes (PDMPs) offer considerable promise for reducing this O(N) burden, due to their ability
to use sub-sampling techniques, whilst still being guaranteed to target the true posterior distribution (Bierkens et al.,
2016; Bouchard-Côté et al., 2015; Fearnhead et al., 2016; Galbraith, 2016; Pakman et al., 2016). Furthermore, factor graph
decompositions of the target distribution can be leveraged to perform sparse updates of the variables (Bouchard-Côté et al.,
2015; Nishikawa et al., 2015; Peters and De With, 2012).

PDMPs explore the state space according to constant velocity dynamics, but where the velocity changes at random event
times. The rate of these event times, and the change in velocity at each event, are chosen so that the position of the resulting
process has the posterior distribution as its invariant distribution. We will refer to this family of sampling methods as
Piecewise Deterministic Monte Carlo methods (PDMC).
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Existing PDMC algorithms can only be used to sample from posteriors where the parameters can take any value in Rd.
In this paper (Section 2) we show how to extend PDMC methodology to deal with constraints on the parameters. Such
models are ubiquitous in machine learning and statistics. For example, many popular models used for binary, ordinal
and polychotomous response data are multivariate real-valued latent variable models where the response is given by a
deterministic function of the latent variables (Albert and Chib, 1993; Fahrmeir and Tutz, 2001; Train, 2009). Under the
posterior distribution, the domain of the latent variables is then constrained based on the values of the responses. Additional
examples arise in regression where prior knowledge restricts the signs of marginal effects of explanatory variables such as
in econometrics (Geweke, 1986), image processing and spectral analysis (Bellavia et al., 2006; Guo and Berman, 2012) and
non-negativematrix factorization (Kim and Park, 2007). A fewmethods for dealingwith restricted domains are available but
these either target an approximation of the correct distribution (Patterson and Teh, 2013) or are limited in scope (Pakman
and Paninski, 2014).

2. Piecewise deterministic Monte Carlo on restricted domains

Here we present the general PDMC algorithm in a restricted domain. Specific implementations of PDMC algorithms can
be derived as continuous-time limits of familiar discrete-time MCMC algorithms (Bierkens and Roberts, 2017; Peters and
De With, 2012), and these derivations convey much of the intuition behind why the algorithms have the correct stationary
distribution. Our presentation of these methods is different, and more general. We first define a simple class of PDMPs and
show how these can be simulated. We then give simple recipes for how to choose the dynamics of the PDMP so that it will
have the correct stationary distribution.

Our objective is to compute expectations with respect to a probability distribution π on O ⊆ Rd which is assumed to
have a smooth density, also denoted π (x), with respect to the Lebesgue measure on O. With this objective in mind, we will
construct a continuous-time Markov process Zt = (Xt , Vt )t≥0 taking values in the domain E = O × V , where O and V
are subsets of Rd, such that O is open, pathwise connected and with Lipschitz boundary ∂O. In particular, if O = Rd then
∂O = ∅. The dynamics of Zt are easy to describe if one views Xt as position and Vt as velocity. The position process Xt moves
deterministically, with constant velocity Vt between a discrete set of switching times which are simulated according to N
inhomogeneous Poisson processes, with respective intensity functions λi(Xt , Vt ), i = 1, . . . ,N , depending on the current
state of the system. At each switching time the position stays the same, but the velocity is updated according to a specified
transition kernel. More specifically, suppose the next switching event occurs from the ith Poisson process, then the velocity
immediately after the switch is sampled randomly from the probability distribution Qi(x, v, ·) given the current position x
and velocity v. The switching times are random, and designed in conjunction with the kernels (Qi)Ni=1 so that the invariant
distribution of the process coincides with the target distribution π .

To ensure that Xt remains confinedwithinO the velocity of the process is updatedwhenever Xt hits ∂O so that the process
moves back into O. We shall refer to such updates as reflections even though they need not be specular reflections.

The resulting stochastic process is a Piecewise Deterministic Markov Process (PDMP, Davis, 1984). For it to be useful as
the basis of a Piecewise Deterministic Monte Carlo (PDMC) algorithm we need to (i) be able to easily simulate this process;
and (ii) have simple recipes for choosing the intensities, (λi)Ni=1, and transition kernels, (Qi)Ni=1, such that the resulting process
has π (x) as its marginal stationary distribution. We will tackle each of these problems in turn.

2.1. Simulation

The key challenge in simulating our PDMP is simulating the event times. The intensity of events is a function of the state
of the process. But as the dynamics between event times are deterministic, we can easily represent the intensity for the next
event as a deterministic function of time. Suppose that the PDMP is driven by a single inhomogeneous Poisson process with
intensity function

λ̃(u; Xt , Vt ) = λ(Xt + uVt , Vt ), u ≥ 0.

We can simulate the first event time directly if we have an explicit expression for the inverse function of the monotonically
increasing function

u ↦→

∫ u

0
λ̃(s; Xt , Vt ) ds. (1)

In this case the time until the next event is obtained by (i) simulating a realization, y say, of an exponential random variable
with rate 1; and (ii) setting the time until the next event as the value τ that solves

∫ τ

0 λ̃(s; Xt , Vt ) ds = y.
Inverting (1) is often not practical. In such cases simulation can be carried out via thinning (Lewis and Shedler, 1979).

This requires finding a tractable upper bound on the rate, λ(u) ≥ λ̃(u; Xt , Vt ) for all u > 0. Such an upper boundwill typically
take the form of a piecewise linear function or a step function. Note that the upper bound λ is only required to be valid along
the trajectory u ↦→ (Xt + uVt , Vt ) in O × V . Therefore the upper bound may depend on the starting point (Xt , Vt ) of the
line segment we are currently simulating. We then propose potential events by simulating events from an inhomogeneous
Poisson process with rate λ(u), and accept an event at time uwith probability λ̃(u; Xt , Vt )/λ(u). The time of the first accepted
event will be the time until the next event in our PDMP.
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