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a b s t r a c t

Stein’s unbiased risk estimate (SURE) is considered for matrix valued observables with low
rank means. It is shown that SURE is applicable to a class of spectral function estimators
including the reduced rank estimator.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Low rank approximations of a matrix are useful for dimension reduction (PCA), reduced-rank regression and matrix
completion, see (Mukherjee et al., 2015) and Chapter 7 in Hastie et al. (2015), and compression and noise reduction as
treated by Candès et al. (2013). The computation of a low rank approximation is typically based on the singular value
decomposition of the matrix. If Y is a p × qmatrix with p ≥ q, the singular value decomposition can be written as

Y =

q∑
k=1

dkukv
T
k

with dk ≥ 0, uk ∈ Rp and vk ∈ Rq. The uk-vectors as well as the vk-vectors are orthonormal. When all the singular values are
unique and ordered as d1 > d2 > · · · > dq ≥ 0, the Eckart–Young–Mirsky theorem states that the matrix of rank at most r
that approximates Y best in terms of the Frobenius norm as well as the spectral norm is given by

µ̂(r) =

r∑
k=1

dkukv
T
k

for r ∈ {1, . . . , q}. The hard threshold approximation given by

µ(λ) =

q∑
k=1

dk1(dk ≥ λ)ukv
T
k
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for λ ≥ 0 yields the same sequence of approximations but parametrized differently. Other approximations may be obtained
by shrinkage of the singular values toward zero, one example being soft thresholding

µ̃(λ) =

q∑
k=1

(dk − λ)+ukv
T
k ,

which was studied in detail by Candès et al. (2013).
A natural question to ask is how the parameter r or λ above should be chosen. A statistical answer is given by providing

a sampling model of Y and regarding the low rank approximations as estimators of an unknown mean. If it is possible to
estimate the risk of those estimators, r orλ can be chosen byminimizing the risk estimate. Candès et al. (2013) demonstrated
that soft thresholding is a Lipschitz continuous estimator, and they used this to show that the risk can then be estimated
unbiasedly via SURE. However, other estimators like the hard thresholding estimator are discontinuous, and it is of interest
to understand precisely if and when SURE can be applied beyond soft thresholding.

We will throughout work with the model where Y = (Yij)i,j has independent entries with

Yij ∼ N (µij, σ
2)

and µ = (µij)i,j is of low rank. The estimators µ̂(r), µ(λ) and µ̃(λ) are examples from the more general class of spectral
function estimators

µ̂ =

q∑
k=1

fk(dk)ukv
T
k , λ1 > λ2 > · · · > λq ≥ 0

for some spectral functions fk : [0, ∞) → [0, ∞). The hard thresholding estimator has fk(d) = d1(d ≥ λ), the soft
thresholding estimator has fk(d) = (d − λ)+, and the estimator with fk(d) = d1(k ≤ r) – which gives the best rank r
approximation – will be referred to as the reduced rank estimator.

In the framework of spectral function estimators, Candès et al. (2013) derived an explicit formula (formula (9) in their
paper) for the divergence of µ̂ as a function of Ywhen Y has distinct singular values and fk is differentiable in a neighborhood
of dk. This divergence is required for the computation of SURE, and it is therefore important for applications. They also
demonstrated in detail (Lemma III.3) via Stein’s lemma the unbiasedness of SURE in the special case of soft thresholding, but
they did not demonstrate if their divergence formula can be applied to obtain unbiased risk estimation for other estimators.

Mukherjee et al. (2015) derived similar formulas for the divergence—apparently unaware of the paper by Candès et al.
(2013). One difference is that Mukherjee et al. (2015) focused on the regression setup, where the columns of the observation
matrix are projected onto a fixed subspace before it is subjected to a low rank approximation.

Neither Candès et al. (2013) nor Mukherjee et al. (2015) provided conditions for general spectral function estimators
that ensure that Stein’s lemma applies. Mukherjee et al. (2015) indicated on page 460 that the mere existence of the partial
derivatives (Lebesgue) almost everywhere is sufficient for Stein’s lemma, which is not the case. Candès et al. (2013) stated a
version of Stein’s lemma as their Proposition III.1, which correctly assumes weak differentiability of the estimator, but they
did not demonstrate weak differentiability for other estimators than soft thresholding.

The purpose of this paper is to provide conditions ensuring that a spectral function estimator is, indeed, weakly
differentiable so that Stein’s lemma applies. In particular, we show that the reduced rank estimator is weakly differentiable
so that the SURE formula as given by Candès et al. (2013) orMukherjee et al. (2015) results in unbiased estimation of the risk.
To illustrate the relevance of such sufficient conditions, we show by a small simulation that the SURE formula for singular
value hard thresholding does not give unbiased estimation of the risk.

2. Degrees of freedom and Stein’s lemma

In this section we state a version of Stein’s lemma, which can be applied directly to a class of spectral function estimators
including the reduced rank estimator. It is formulated for n-dimensional Gaussian vectors and applies to the matrix valued
observations and estimators above by taking n = pq.

Let y ∼ N(µ, σ 2I) be an n-dimensional Gaussian random variable and µ̂ an estimator of µ with finite second moment;
E∥µ̂∥

2
2 < ∞. Define, in addition, the effective degrees of freedom as

df =
1
σ 2

n∑
i=1

cov(µ̂i, yi), (1)

and let∇·µ̂ =
∑n

i=1∂iµ̂i denote the divergence of µ̂whenever it is Lebesgue almost everywhere differentiable. The following
lemma gives a sufficient condition for ∇ · µ̂ to be an unbiased estimate of the degrees of freedom. The proof of the lemma is
given in the supplementary material.
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