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a b s t r a c t

Let XH and XK be solutions to two stochastic differential equations driven by independent
fractional Brownianmotions with Hurst parametersH and K , respectively. We study when
XH and XK intersect with each other over a finite time interval. We also derive Hausdorff
and packing dimension results for the set of intersection times of XH and XK .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Random dynamical systems are well establishedmodeling tools for a variety of natural phenomena ranging from physics
(fundamental and phenomenological) to chemistry and more recently to biology, economics, engineering sciences and
mathematical finance. Inmany interestingmodels the lack of any regularity of the external inputs of the differential equation
as functions of time is a technical difficulty that hampers their mathematical analysis. The theory of rough paths has been
initially developedby T. Lyons (Lyons, 1998) in the 1990’s to provide a framework to analyze a large class of drivendifferential
equations and the precise relations between the driving signal and the output (that is the state, as function of time, of the
controlled system).

Rough paths theory provides a nice framework to study differential equations driven by Gaussian processes (see Friz and
Victoir, 2010a). In particular, using rough paths theory, we may define solutions of stochastic differential equations driven
by a fractional Brownian motion. Consider

Xt = x +

∫ t

0
V0(Xs)ds +

d∑
i=1

∫ t

0
Vi(Xs)dBi

s, (1)

where x ∈ Rn, V0, V1, . . . , Vd are bounded smooth vector fields on Rn and {Bt , t ≥ 0} is a d-dimensional fractional Brownian
motion with Hurst parameter H ∈ (1/4, 1). Existence and uniqueness of solutions to the above equation can be found, for
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example, in Lyons and Qian (2002). In particular, when H = 1/2, this notion of solution coincides with the solution of the
corresponding Stratonovitch stochastic differential equation. It is also clear now (cf. Baudoin and Hairer, 2007; Cass and Friz,
2010; Cass et al., 2013, 2015; Hairer and Pillai, 2013) that under Hörmander’s condition the law of the solution Xt has a
smooth density pt (x, y) with respect to the Lebesgue measure on Rn.

In the present work, we are interested in the mutual intersection of two independent solutions to equations of type
(1). More precisely, suppose we have two mutually independent fractional Brownian motions B = (B1, . . . , Bd) and
B̃ = (B̃1, . . . , B̃d) from the same probability space (Ω, F ,P), with Hurst parameters H and K , respectively. We assume
that both H and K are greater than 1/4, and without loss of generality, assume that H ≤ K . Note here that we give ourselves
the flexibility that the two fractional Brownian motions have different Hurst parameters. Let XH be the solution to Eq. (1)
driven by B. Assume that XK is the solution to an equation of the same type as (1), but with a different starting point x̃ and
possibly another set of vector fields Ṽi : i = 0, . . . , d, driven by the second fractional Brownian motion B̃. Clearly XH and XK

are independent. We are interested in when these two solutions intersect with each other over the time interval [0, 1].
The question of mutual intersection as above are usually discussed in the setting of random fields. Standard strategy in

solving this problem is to consider the random field of two parameters Y (s, t) = (XH
s , XK

t ) and translate the question of
mutual intersection to the question of hitting probability

When do we have P{ Y hits D on [0, 1]2 } > 0 ?

Here D = {(x, x) : x ∈ Rn
} is the diagonal.

The problem about hitting probabilities is important in potential theory of stochastic processes and random fields.
Usually, to solve a hitting probability problem, sophisticated computations are expected. We refer to Chen and Zhou (2015),
Xiao (2009) and references therein for details.

In this work, we propose a simple approach to the problem, employing current development in the study of Eq. (1). The
main idea is described as follows. Since XH and XK are independent, we can freeze XH by conditioning. For a single sample
path XH

[0, 1](ω) = {XH
t (ω) : 0 ≤ t ≤ 1}, one knows its Hausdorff dimension (as a subset of Rn) explicitly in terms of H (see

Theorem 3.2). On the other hand, it is also known that for any bounded Borel set E ⊂ Rd the probability

P (Xt hits E for t ∈ [a, b])

can be characterized by the α-dimensional Newtonian capacity of E for α = n − 1/K (see Theorem 3.1). Given the relation
between Hausdorff dimension and Capacity dimension, one should be able to draw some information on whether XK

hits a particular sample path E = XH
[0, 1](ω) of XH . The question whether XK hits XH is then answered by undoing the

conditioning.
Throughout our discussion,we assume that the vector fieldsVi (and Ṽi, respectively) in Eq. (1) forXH (andXK , respectively)

are C∞-bounded and satisfy the following uniform ellipticity condition.

Hypothesis 1.1 (Uniform Ellipticity). The vector fields V1, . . . , Vd are said to form an uniform elliptic system if

v∗V (x)V ∗(x)v ≥ λ|v|
2, for all v, x ∈ Rn, (2)

where we have set V = (V i
j )i=1,...,n;j=1,...,d and where λ designates a strictly positive constant.

Remark 1.2. Under the uniform ellipticity condition we have d ≥ n.

The main result of our investigation is reported in the following two theorems.

Theorem 1.3. Consider the event

A = {XH and XK intersect each other over the interval [0, 1]}.

We have

(1) if n > 1/H + 1/K , then P(A) = 0; and
(2) if n < 1/H + 1/K , then P(A) > 0.

Fix any small ϵ > 0, and let T = {(s, t) ∈ [ϵ, 1]2 : XH
s = XK

t }. Denote by dimHT and dimPT the Hausdorff dimension and
packing dimension of T , respectively.

Theorem 1.4. If 1
H +

1
K > n, then with positive probability,

dimHT = dimPT =

⎧⎪⎨⎪⎩
2 − nH if

1
H

> n,

1 +
K
H

− nK if
1
H

≤ n <
1
H

+
1
K

.

The rest of the paper is organized as follows. In Section 2, we present some preliminarymaterial on rough path theory and
stochastic differential equations driven by fractional Brownianmotions. The needed results on fractal properties of solutions
to Eq. (1) is summarized in Section 3. Finally, we prove Theorem 1.3 in Section 4, and Theorem 1.4 in Section 5.



Download English Version:

https://daneshyari.com/en/article/7548699

Download Persian Version:

https://daneshyari.com/article/7548699

Daneshyari.com

https://daneshyari.com/en/article/7548699
https://daneshyari.com/article/7548699
https://daneshyari.com

