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a b s t r a c t

The Constrained Cramér–Rao Lower Bound (CCRB) works only for an unbiased estimator.
The CCRB of Stoica and Ng (1998) is revisited and generalized. The bound is applied to two
applications in the nonlinear EIV models.
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In a curve fitting problem, the goal is to estimate the parameter vector θ = (θ1, . . . , θp)T that defines a family of curves 1

represented by the implicit equation 2

P(x, y; θ) = 0. (1) 3

For example in the linear fitting problem, the two parameters to be estimated are (α, β). The two parameters describe the 4

straight-line y = α + βx. Similarly, the parameters can be the coordinates of the circle center c = (a, b)T and the radius R 5

for a single circle fitting. In the concentric circles fitting problem, the model often contains the common center c = (a, b) 6

and the radii R1 and R2 where R1 < R2. 7

The estimation requires a number of measurement points and they are represented by the observation vector X = 8

(sT1, . . . , s
T
n )

T
= X̃ + e, where sTi = (xi, yi) is the ith observation, X̃ = (s̃T1, . . . , s̃

T
n ) is the true value of X , E = (eT1, . . . , e

T
n )

T
9

is the noise vector and ei is the measurement noise for point i = 1, 2, . . . , n. 10

We can exploit Eq. (1) in many ways to obtain θ. For instance, the least-squares approach uses the noisy measurements 11

in Eq. (1) and it minimizes the sum of the residual squared errors. The Errors-In-Variables (EIV) approach, which we are 12

going to focus on, takes a completely different formulation. It solves the fitting problem by treating the true point vector 13

X̃ as an unknown but fixed (non-random) parameter. Essentially the true points of the measurements are considered as 14

nuisance variables. Each true point is expected to satisfy Eq. (1) perfectly. The set of implicit equations, one for each true 15

point, acts as constraints for the estimation. Such model is known in the EIV literature as the functional model, and it is 16

adopted in the application oriented community especially in computer vision. Employing the EIV approach has an additional 17

2n (‘incidental’) parameters and there are a total of 2n + p unknowns to be found. 18

As a standard measure in statistical performance, the efficiency of any unbiased estimator can be determined by the 19

Cramèr–Rao bound (CRB) obtained by taking the inverse of the Fisher information matrix (FIM). The CRB is widely used in 20
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statistics for any unbiased estimator without any restriction on the parameters space that is continuous. However, when a1

parameter space is imposed with some constraints, then the FIM might not be easy to play with.2

Evaluating the CRB for the geometric fitting problems, such as circle or ellipse fitting, has a long history. For the circle3

fitting problem, for instance, the CRB was derived in 1995 by Chan and Thomas (1995). Kanatani (1998) derived a general4

CRB for arbitrary curves for any unbiased estimator, then independently Zelniker and Clarkson presented another proof in5

2006, see Zelniker and Clarkson (2006) for more details. That is, let θ̂ be an unbiased estimator of θ satisfying Eq. (1) and let6

V be its covariancematrix. If ei’s are identically and independently distributed and ei ∼N(0, σ 2I2), then there is a symmetric7

positive semi-definite matrix Vmin such that V ≥ σ 2Vmin. Here the notation A ≥ Bmeans that A−B is positive semidefinite.8

From now on, we will also denote the zero and the identity matrix of size k by 0k and Ik, respectively. In addition, we denote9

Ak×m to be a matrix of size k × m, while Ak to be a square matrix of size k.10

Oneobvious disadvantage surrounds the CRB is that it can be applied only to unbiased estimators!However, all estimators11

for the geometric fitting problems are, essentially, biased. The magnitude of bias is particularly significant when the noise12

level of the observation is large.13

In the early 2000’s, Chernov and Lesort (2004) realized that Kanatani’s formula does notwork for any (practical) estimator14

in curve fitting problems in EIV models because all existing estimators are biased. To resolve this problem, they treated the15

CRB derivation problem as one with a minimal requirement called geometric consistency. That is, an estimator θ̂ is called a16

geometrically consistent estimator of the true parameter vector θ̃, if, plimX→X̃ θ̂(X ) = θ̃.17

Precisely geometrically consistent estimator means that whenever σ = 0, i.e. when the true points are observed without18

noise, then the estimator returns the true parameter vector, i.e. finds the true curve. Geometrically, it means that if there is19

a model curve that interpolates the data points, then the algorithm finds it. With some degree of informality, one can assert20

that whenever plimX→X̃ θ̂(X ) = θ̃ holds, the estimate θ̂(X ) is consistent in the limit σ → 0. This is regarded as a minimal21

requirement for any sensible fitting algorithm. For example, if the observed points lie on one circle, then every circle fitting22

algorithm finds that circle uniquely. Kanatani (2005) remarks that algorithms which fail to follow this property ‘‘are not23

worth considering’’. Therefore, this property is essential for any meaningful estimator in geometric estimation problems.24

Chernov and Lesort (2004) assumed that estimatorsmust have this property in order to derive the CRB. They also assumed25

that the observation noises ei are isotropic. Accordingly, they employed the first-order analysis for any geometrically26

consistent estimator and derived the minimal possible lower bound, to the first leading term. That is, there is a symmetric27

positive semi-definite matrix Vmin, such that, the leading term of the variance matrix, say V, of any geometrically consistent28

estimator θ̂ satisfying the condition plimX→X̃ θ̂(X ) = θ̃ has its natural bound σ 2Vmin, i.e., V ≥ σ 2Vmin. This bound is the29

leading term of the variance and it coincides with Kanatani’s formula. The CRB derived by Kanatani can be applied only30

to unbiased estimators. Therefore, they called it the Kanatani–Cramér–Rao bound (KCR) after Kanatani. Since then, the KCR31

bound has been used as a measure of the efficiency for any meaningful estimator for the curve fitting problem.32

The isotropic assumption about the noise is intuitively realistic for computer vision applications. For edge detection,33

pattern recognition, and computer vision, detecting (observing) any point si does not give any information about other34

points and hence the errors are independent. It is also reasonable to assume that the errors ei’s have the same covariance35

matrix for all points, becauseweuse the same algorithm for edge detection. These statistical assumptions, however, are easily36

violated in several real life situations. In fact, reasonable assumptions about the noise depend on the particular application37

itself. Several studies in the literature have recently used other specific assumptions, such as the Markov Chain assumption38

between observations for correlated data that appears in archaeology (Chernov and Sapirstein, 2008) and others. This39

motivates us enough to generalize their work. We will generalize the CRB in order to be applicable to a wide range of data40

including correlated data.41

Compared to the previous work, we took a different approach to evaluate the bound under the EIV model. In particular,42

the parameter space is expanded to 2n + p variables and Eq. (1) is utilized as a constraint between each true data point and43

the geometric parameters. Such interpretation allows us to start from the work done by Stoica and Ng (1998, Theorem 1)44

for Constrained CRB (CCRB) that can be applied to only unbiased estimator. Then we derive the constrained CR bound for a45

biased estimator. Therefore, our results do not require the condition plimX→X̃ θ̂(X ) = θ̃.46

To state Stoica and Ng’s results (Stoica and Ng, 1998), let us first denote the probability density function of the random47

vector X parameterized by Θ by f (X ;Θ), and the likelihood function by L. The score function is ∆ = ∆(Θ) =
∂ log L(Θ;X )

∂Θ
,48

and as such, the FIM becomes Jm = E(∆∆T ). Now, if we define P =

(
P̃1, . . . , P̃n

)T
, where P̃i = P(s̃i, θ̃) then the constraints49

P = 0n×1 imposes n-continuously differentiable constraints given by Fn×m = 0n×m, where the ith row of F is ∂P(s̃i,Θ)
∂ΘT

⏐⏐
Θ=Θ̃

,50

i.e.,51 (
∂ P̃i
∂ s̃T1

, . . . ,
∂ P̃i
∂ s̃Tn

,
∂ P̃i
∂θ̃1

, . . . ,
∂ P̃i
∂θ̃p

)
. (2)52

The n × m gradient matrix F is assumed to have full row rank, i.e. rank(F) = n (note here thatm = 2n + p). This means that53

there exists a matrix U = U(Θ̃) ∈ Rm×(m−n) such that54

FU = 0n×(m−n), UTU = Im−n. (3)55
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