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A NOTE ON THE MONOTONE STOCHASTIC ORDER

FOR PROCESSES WITH INDEPENDENT INCREMENTS

DAVID CRIENS

Abstract. We construct a coupling of two processes with independent increments which proves condi-

tions for a monotone stochastic order.

1. Introduction

Stochastic orders for processes are interesting from many perspectives. In mathematical finance, for

instance, stochastic orders are used to study monotonicity of option prices, see [3], or to solve problems

arising in portfolio optimization, see [7]. Another application lies in the comparison of path-properties of

processes. For example, Ikeda and Watanabe use a monotone stochastic order for Itô processes to prove

Khasminkii’s test for explosion, see [4].

Let us introduce the stochastic order we study in this note. Denote by D the space of all càdlàg

functions [0,∞) → R and equip it with the Skorokod topology. A Borel functional f : D → R is called

increasing if f(ω) ≤ f(α) for all ω, α ∈ D with ωt ≤ αt for all t ∈ [0,∞). Let X and Y be two processes

with paths in D. We write X �pst Y if

E[f(X)] ≤ E[f(Y )](1.1)

for all bounded increasing functionals f : D → R. The boundedness is not crucial, i.e. if the inequality

(1.1) holds for all bounded increasing functionals, it holds also for all increasing functionals for which the

expectations are well-defined, see [6]. Here, pst is an acronym for pathwise stochastic order.

A process Z on (Ω,F, (Ft)t≥0, P ) is called a process with independent increments (PII) if it is a real-

valued càdlàg and adapted process such that Z0 = 0 and for all 0 ≤ s ≤ t < ∞ the random variable

Zt − Zs is independent of Fs. We assume that X and Y are two PIIs.

We introduce some natural conditions for X �pst Y : Suppose that X and Y satisfy a drift condition,

see (2.3) below, have the same Gaussian components and posses the specific jump structure that the

intensity of negative jumps of Y is less than the intensity of negative jumps of X, and the intensity of

positive jumps of Y is larger than the intensity of positive jumps of X, see (2.4) below. For Lévy processes

and quasi-left continuous PIIs such conditions appear in [1, 2].

Conditions of this type can be proven by a coupling argument, i.e. one constructs copies of X and Y

on a common probability space such that a.s. Xt ≤ Yt for all t ∈ [0,∞). It is easy to see that such a

coupling implies X �pst Y .

Let us shortly comment on coupling ideas in the related literature. In [1], a coupling is given for the

case where X and Y are compound Poisson processes, whose underlying Poisson processes have the same

jump intensities. The idea is to realize X and Y via one common Poisson process. In [2], the PIIs X and

Y are decomposed (in law) into two parts, i.e. X
law
= Z +ZX and Y

law
= Z +ZY , where ZY −ZX has only

positive paths. This decomposition holds (modulo integrability issues) if X and Y have no fixed times of

discontinuity.

In this note we present an alternative coupling, which even applies to PIIs with fixed times of discon-

tinuity. The idea is as follows: We start with a PII which has the same intensities of negative jumps as X

and the same intensities of positive jumps as Y . In other words, the PII has a higher frequency of jumps

than both X and Y . Then, by removing negative jumps independently with a certain rate, we obtain a
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